Abstract:
A target memory cell of a memory device is programmed by applying a programming voltage to a word line that includes the target memory cell, determining whether the target memory cell is programmed, and increasing the programming voltage by a step voltage if it is determined that the target memory cell is not programmed. An initial programming voltage and the step voltage are each selectable after fabrication of the memory device.
Abstract:
A non-volatile memory array with both single level cells and multilevel cells. The single level and multilevel cells, in one embodiment, are alternated either along each bit line. An alternate embodiment alternates the single and multilevel cells along both the bit lines and the word lines so that no single level cell is adjacent to another single level cell in either the word line or the bit line directions.
Abstract:
The invention provides methods and apparatus. A NAND flash memory device receives command and address signals at a first frequency and a data signal at a second frequency that is greater than the first frequency.
Abstract:
An optical signal converter and a method or controlling an amplification gain according to a rotating speed of an optical disc. An optical signal detector detects an optical signal reflected from an optical disc in a reproduction mode and converts the detected optical signal into an electrical signal. A gain control signal generator generates a gain control signal when a voltage level of a driving signal used to drive the optical disc exceeds a maximum output voltage of the optical signal converter. A gain switcher selects an amplification gain of the optical signal converter in response to the gain control signal and an external control signal. A signal amplifier amplifies a signal output from the optical signal detector in response to an output signal of the gain switcher.
Abstract:
A sensing circuit including a sense amplifier to resolve a data signal generated by a memory cell is disclosed herein. The sensing circuit includes a bit line to receive the data signal, a first pre-charge device coupled to the bit line and configured to pre-charge the bit line, a device for providing a bias coupled to the bit line and configured to provide a bias to the bit line, and a reference node configured to be at least one pre-determined level. In one embodiment the pre-determined level is equal to a low potential such as ground and in another embodiment equal to a high potential such as VDD. One or more switching devices allows for the activation or deactivation of the pre-charge device allowing to pre-charge the bit line to a certain potential and the sensing circuit quickly and accurately determines whether a logical state of ‘1’ or ‘0’ is being applied to the bit line.
Abstract:
An internal clock generator including a switching controller interposed between a digital delay locked loop and an externally generated clock signal. The switching controller reduces current consumptions starting from a next cycle when an external clock and an internal clock are in phase. Further, when the external clock and the internal clock are in phase, driving of the unnecessary elements is suppressed, thereby reducing the current consumption in the internal clock generator.
Abstract:
At least two spaced apart control lines are located between adjacent spaced apart power lines on a memory cell array of an integrated circuit memory device. The spaced apart power lines preferably are wider than the spaced apart control lines, and the space between adjacent control lines preferably is equal to the space between a power line and an adjacent control line. Accordingly, the width of the power lines can be increased without requiring an increase in the size of the integrated circuit memory.
Abstract:
A method and structure for a refresh operation with a low voltage of logic high in a computer memory structure is provided. The method and system includes first the precharging of a plurality of bit lines and a plurality of complementary bit lines to a voltage higher than the reference voltage. Then at least one of a plurality of word lines and at least one of a plurality of reference word lines are selected. Next, the sense amplifier is activated such that either the plurality of bit lines or the plurality of complementary bit lines discharges to a voltage of logic low. This discharge creates a voltage difference between the plurality of bit lines and the plurality of complementary bit lines. The resulting voltage on the bit lines is restored to the memory cells on the selected word lines. Then, the plurality of bit lines and the plurality of complementary bit lines are restored to the reference voltage. This method and structure allows the use of a logic high voltage lower than 2.0 V without compromising the reliability of the sense amplifier. The implementation of the method and structure of the present invention is cost effective and practical for most if not all DRAM applications.
Abstract:
The present invention relates to a semiconductor memory device incorporating a column redundancy circuit using a decoded fuse. The column redundancy circuit is capable of designating a repaired address during a parallel test mode of memory operation when an address input is a "don't care," and it is particularly useful in a multiple input/output memory architecture which uses one column select per I/O line. The column redundancy circuit includes: transmitting means comprised of the data input/output lines for transmitting the data of the memory cell; column decoder and input/output control circuits connected to the transmitting means and decoding a column address input to input data; a circuit connected to the transmitting means and outputting a given signal to the column decoder and input/output control circuits in response to a plurality of output signals output from fuses and a signal for controlling the transmitting means; a plurality of decoded fuse circuits, the levels of which are determined by one fuse connected to the circuit; multiplexers for selectively transmitting data from one of the data input/output lines to a specific data bus line among a plurality of data bus lines; and a decoding circuit which receives the outputs of the decoded fuse circuits and generates a redundancy signal.
Abstract:
Address buffers of a semiconductor memory device have a switching section for switching into each other transmission routes of first and second address signals input from outside in response to predetermined control signals. The signals allow input of the address signals and set the operating mode of the semiconductor memory device.