Abstract:
An apparatus (100) for protecting a circuit (200) from an input volume comprises a switchable element (10) arranged to couple the input voltage (VIN) to the circuit (200) in response to a first control signal (DRV1) having a first value and to decouple the input voltage (VIN) from the circuit (200) in response to the first control signal (DRV1) having a second value. A monitor stage (20) compares a monitored voltage (VMON) to a threshold (VIN). A controller (30) provides the first control signal (DRV1) to the switchable element (10), the first control signal (DRV1) having the first value when the monitored voltage (VMON) is on one side of the threshold (VTH) and the second value when the monitored voltage (VMON) is on the other side of the threshold (VTH), wherein the first value is independent of the input voltage (VIN) and the second value is equal to the input voltage (VIN).
Abstract:
An electrical circuit for conversion from differential to single-ended includes a differential amplifier stage and first and second buffer circuits. The differential amplifier stage includes a first and a second input; and a first and a different second charging circuit that can be operatively coupled, respectively, with an output of the conversion circuit and with an auxiliary output. Each of the first and second buffer circuits is functionally arranged between one of said outputs and between one of said charging circuits. The buffer circuits being configured so as to substantially equalize relative impedances seen towards said outputs.
Abstract:
An integrated buffer device for a switched capacitance circuit having a buffer with an output for an output voltage dependent upon an input voltage that can be supplied by a source to the buffer device; a capacitive switching component that can be switched between a first and second condition and connected, respectively, to the source and to the buffer to transfer the input voltage onto the output; the capacitive switching component provided with a terminal having an associated stray capacitance; a charging and discharging device configured to pre-charge the stray capacitance at a reference voltage before taking up the second condition and to pre-discharge the stray capacitance before taking up the first condition.
Abstract:
A current steering digital-analog converter for converting a digital code into an analog signal, the converter including a substrate of semiconductor material, an array of current generators integrated in the substrate, a common summation node and switches controllable on the basis of the digital code for connecting and disconnecting the current generators to and from the common summation node. The current generators are adapted to provide the common summation node with currents having a multiple value according to a power of two compared to a unit current value provided to the summation node by a current generator of the array of generators. The current generator is divided into a base number of modular current generation elements in parallel to one another at least equal to two.
Abstract:
A calibration circuit calibrates an adjustable capacitance of a circuit having a time constant depending on the adjustable capacitance. The calibration circuit outputs a calibration signal carrying information for calibrating the capacitor and includes a calibration loop. The calibration circuit includes: a controllable capacitance unit suitable to receive a control signal and including at least one array of switched capacitors that can be activated by the control signal, the unit being such as to output a first signal characterized by a parameter depending on the amount of capacitance of the array activated by the control signal; a comparison unit suitable to receive the first signal to assess whether the parameter meets a preset condition and to output a comparison signal representative of the assessment result; a control and timing logic unit suitable to receive the comparison signal to change this control signal based on the comparison signal, characterized in that the first signal is a logic signal and the parameter is a time parameter of the first signal.
Abstract:
The described analog-digital converter comprises quantization means having an input for receiving an analog quantity to be converted, a register having an output for providing a digital quantity corresponding to the analog quantity, a timing pulse generator and logic means connected to the quantization means, the register and the timing pulse generator and capable of responding to a conversion request signal by activating the quantization means in such a manner as to make them carry out predetermined operations timed by the timing pulses and load into the register the digital quantity to be provided at the output. With a view to permitting the converter to function even when a system clock is not available, the timing pulse generator, which is incorporated in the integrated circuit that comprises the rest of the converter, comprises an oscillator capable of being started/stopped by a binary signal applied to its activation input and the logic means are capable of generating a stop signal of the oscillator and comprise means for generating the binary signal to be applied to the activation input of the oscillator. This signal assumes a first or a second binary state corresponding, respectively, to activation and deactivation of the oscillator in response to, respectively, the conversion request signal and the stop signal of the oscillator.
Abstract:
A switched capacitor digital-to-analog converter includes a first voltage generator for providing first and second reference voltages, a second voltage generator for providing third and fourth reference voltages selected to match predetermined design values of the first and second reference voltages, and an array of binary weighted capacitors. Each capacitor has a first electrode connected to a common circuit node, which is connected to a converter output terminal and a second electrode selectively connected, through an associated first switching circuit, to either one of the first and second reference voltages or, through an associated second switching circuit, to either one of the third and fourth reference voltages. The converter includes a circuit for monitoring the values of each bit of input digital codes, and a control circuit coupled to the first and second switching circuits to open or close selectively during a bit clock period the connections to the first, second, third, and fourth voltages according to the following criterion: when a bit value of the current input digital code Bj is equal to the corresponding bit value of the previous input digital code Bj−1, the first switching circuit is enabled and the second switching circuit is disabled during the whole bit clock period, and when the monitoring circuit detects a bit value of a current input digital code Bj to be different from the corresponding bit value of the previous input digital code Bj−1, the first switching circuit is disabled and the second switching circuit is enabled during a starting time portion of the bit clock period, while the first switching circuit is enabled and the second switching circuit is disabled during the remaining portion of the bit clock period.
Abstract:
A single-ended to differential buffer circuit is is disclosed, adapted to couple at least an input analog signal to a receiving circuit. The buffer circuit comprises an output section comprising a differential amplifier having a first and a second input, a first and a second output. The buffer circuit further comprises an input section comprising a first and a second switched capacitor, each adapted to sample said input analog signal and having a first side and a second side, the first sides of the first and second switched capacitors being controllably connectable/disconnectable to/from said first and second outputs respectively. In the buffer circuit the second sides of said first and second switched capacitors are controllably connectable/disconnectable to/from said first and second inputs of the differential amplifier respectively. Moreover, in the buffer circuit the second sides of the first and second switched capacitors are controllably connectable/disconnectable to/from said second output and said first output respectively. A method for coupling at least a single-ended input analog signal to a receiving circuit with differential inputs is also disclosed.
Abstract:
A time delay logic comprises a first stage with an inverter, a capacitor connected to the input terminal of the inverter, a constant current generator and an electronic switch controlled by an input pulse. The capacitor begins to charge at a predetermined edge of the input pulse and brings the input terminal of the inverter from a first voltage (ground) to the switching threshold voltage of the inverter, so that on the output terminal of the inverter there is obtained a pulse having an edge that, as referred to the predetermined edge of the input pulse, has a delay time that depends on the inverter threshold. The circuit comprises a second stage, coupled with the first, that is a dual circuit of the circuit of the first stage and has an inverter equal to the one of the first stage.
Abstract:
An analog/digital converter for converting an analog signal to a digital output code includes a local digital analog converter including a segmented array. The segmented array includes upper and lower segments of conversion elements selectively operable by respective digital command codes for respectively varying, according to binary weighted contributions, the voltages of first and second common nodes and the voltage of a second common node. A logic unit generates the digital command codes for controlling the local digital/analog converter according to a successive approximation technique for producing the digital output code. The converter includes a redistributor for modifying the command codes for redistributing the modified command codes between the lower segment and the upper segment, while making use of at least one auxiliary conversion element provided in the upper segment.