Abstract:
A device for collecting plant samples includes a punch and die mechanism for taking leaf plugs from plants. The punch itself includes a punch rod coaxially mounted inside a punch tube. In use, the punch tube has a distal end with two, diametrically opposed projections that interact with the formed aperture to cut a plug from a plant leaf. The punch rod then follows to remove a cut leaf plug from the formed aperture. Also included is a hydraulic subsystem for periodically delivering liquid on the punch and die mechanism to prevent plant debris from clogging the device.
Abstract:
A holding plate includes a flat base member with a surface that is formed with a plurality of stations (wells or depressions) for holding specimens. A panel extends downwardly from the edge of the surface to create a concavity for receiving a lid member therein. The panel also has a flange extending outwardly from the concavity. The flat lid member has a skirt with a rim that extends from the edge of the lid member to create a hollow for receiving a base member therein. In operation, a robot or mechanical device selectively engages the flange of the base member and the rim of the lid member to engage or disengage the base and lid members. This allows for individual movement of either the base member or the lid member. This also allows for collective movement of the engaged base and lid members for stacking and storage.
Abstract:
A GigaMatrix plate for holding a large number of small-volume fluid samples includes a base for supporting a plurality of substantially parallel, elongated capillary tubes. Each tube defines a lumen that extends through the base, and each lumen has an aspect ratio greater than about 5:1. Dimensionally, each lumen has an inner diameter that is less than approximately five hundred microns and it has a length greater than about five millimeters. Further, each tube acts to optically distinguish light that is directed toward it from the sample whenever the sample fluoresces inside the tube lumen. Also, however, light from the sample that is directed axially through the tube is emitted therefrom for optical detection of the tube and the sample therein.
Abstract:
A system and method for processing, i.e., sampling and tracking, plant material requires the ability to identify each plant in a plurality of plants. Initially, samples are taken from selected plants and are collected in respective storage locations in a magazine. During sampling, the identity of the plant source for each plant sample is stored. Further, the identity of each storage location receiving a plant sample is stored. Subsequently, the samples are transferred from the storage locations and are placed in respective wells of a receiving member for further downstream processing. Again, the identity of each well receiving a plant sample is stored. As a result, a plant sample in a well can be traced back to its plant source.
Abstract:
A method of sequencing a plurality of template nucleotide sequences includes immobilizing the plurality of template nucleotide sequences on a substrate. A first subset of the plurality of template nucleotide sequences is immobilized in a first field of view and a second subset of the plurality of template nucleotide sequences is immobilized in a second field of view. The first and second subsets are hybridized to a caged primer. The caged primer includes a caging group. The method further includes lysing the caging group from the caged primer in the first field of view and observing the first field of view to detect sequencing of the first subset of the plurality of template nucleotide sequences.
Abstract:
A nucleic acid detection system and method are provided, in which excitation energy is transmitted from a pulsed excitation source to a reaction site including a fluorescence resonance energy transfer (FRET)-based dye system to generate a fluorescent signal at the reaction site, the fluorescent signal is detected by a detector from the reaction site, and detection of the fluorescent signal is respectively blocked and permitted at the detector by a detector gate this is timed based on an emission start time of the transmitted excitation energy.
Abstract:
A GigaMatrix plate for holding a large number of small-volume fluid samples includes a base for supporting a plurality of substantially parallel, elongated capillary tubes. Each tube defines a lumen that extends through the base, and each lumen has an aspect ratio greater than about 5:1. Dimensionally, each lumen has an inner diameter that is less than approximately five hundred microns and it has a length greater than about five millimeters. Further, each tube acts to optically distinguish light that is directed toward it from the sample whenever the sample fluoresces inside the tube lumen. Also, however, light from the sample that is directed axially through the tube is emitted therefrom for optical detection of the tube and the sample therein.
Abstract:
A process for screening an expression library to identify clones expressing enzymes having a desired activity is provided. The process involves first generating from genomic DNA samples of one or more microorganisms an expression library comprising a plurality of recombinant cell clones, and then introducing into capillaries in a capillary array a substrate and at least a subset of the clones, either individually or as a mixture. Interaction of the substrate and a clone expressing an enzyme having the desired activity produces an optically detectable signal, which can then be spatially detected to identify capillaries containing clones producing such a signal. The signal-producing clones can then be recovered from the identified capillaries.
Abstract:
Provided are methods of screening and identification of bioactivities and bioactive molecules of interest using a capillary array system. More specifically, disclosed are methods of using optical detection and capillary array-based techniques for screening libraries and recovering bioactive molecules having a desired activity or a nucleic acid sequence encoding such bioactive molecules.