Abstract:
This invention is directed to water soluble protein polymer conjugates which are stabile in hostile environments. The conjugate comprises a protein which is linked to an acrylic polymer at multiple points through saccharide linker groups.
Abstract:
A lactide polymer coating resulting in a strong, repulpable, high gloss, paper coating. The lactide polymer comprises a plurality of poly(lactide) polymer chains, residual lactide in concentration of less than about 5 percent and water in concentration of less than about 2000 parts-per-million. A process for coating paper with the lactide polymer composition is also disclosed.
Abstract:
A lactide polymer composition combining compositional and purity limitations and catalyst optimization or addition of stabilizing agents resulting in a melt-stable polymer is disclosed. The melt-stable lactide polymer comprises a plurality of polylactide polymer chains, residual lactide in concentration of less than 2 percent and water in concentration of less than 1000 parts-per-million. A stabilizing agent in an amount sufficient to reduce depolymerization of the lactide polymer during melt-processing or alternatively, control of catalyst level at a molar ratio of monomer to catalyst greater than 3000:1 is also included in the melt-stable composition. A process for manufacture of a melt-stable lactide polymer composition includes polymerizing a lactide mixture and adding stabilizing agents sufficient to reduce depolymerization of the polylactide during melt-processing, followed by devolatilizing the polylactide to remove monomer and water.
Abstract:
A lactide polymer composition combining compositional and purity limitations and catalyst optimization or addition of stabilizing agents resulting in a melt-stable polymer is disclosed. The melt-stable lactide polymer comprises a plurality of polylactide polymer chains, residual lactide in concentration of less than 2 percent and water in concentration of less than 1000 parts-per-million. A stabilizing agent in an amount sufficient to reduce depolymerization of the lactide polymer during melt-processing or alternatively, control of catalyst level at a molar ratio of monomer to catalyst greater than 3000:1 is also included in the melt-stable composition. A process for manufacture of a melt-stable lactide polymer composition includes polymerizing a lactide mixture and adding stabilizing agents sufficient to reduce depolymerization of the polylactide during melt-processing, followed by devolatilizing the polylactide to remove monomer and water.
Abstract:
The present invention is directed to renewable compositions derived from fermentation of biomass, and integrated methods of preparing such compositions.
Abstract:
This invention is directed to methods for recovery of C3-C6 alcohols from dilute aqueous solutions, such as fermentation broths. Such methods provide improved volumetric productivity for the fermentation and allows recovery of the alcohol. Such methods also allow for reduced energy use in the production and drying of spent fermentation broth due to increased effective concentration of the alcohol product by the simultaneous fermentation and recovery process which increases the quantity of alcohol produced and recovered per quantity of fermentation broth dried. Thus, the invention allows for production and recovery of C3-C6 alcohols at low capital and reduced operating costs.
Abstract:
Isobutene, isoprene, and butadiene are obtained from mixtures of C4 and/or C5 olefins by dehydrogenation. The C4 and/or C5 olefins can be obtained by dehydration of C4 and C5 alcohols, for example, renewable C4 and C5 alcohols prepared from biomass by thermochemical or fermentation processes. Isoprene or butadiene can be polymerized to form polymers such as polyisoprene, polybutadiene, synthetic rubbers such as butyl rubber, etc. in addition, butadiene can be converted to monomers such as methyl methacrylate, adipic acid, adiponitrile, 1,4-butadiene, etc. which can then be polymerized to form nylons, polyesters, polymethylmethacrylate etc.
Abstract:
The present invention is directed to renewable compositions derived from fermentation of biomass, and integrated methods of preparing such compositions.
Abstract:
This invention is directed to methods for recovery of C3-C6 alcohols from dilute aqueous solutions, such as fermentation broths. Such methods provide improved volumetric productivity for the fermentation and allows recovery of the alcohol. Such methods also allow for reduced energy use in the production and drying of spent fermentation broth due to increased effective concentration of the alcohol product by the simultaneous fermentation and recovery process which increases the quantity of alcohol produced and recovered per quantity of fermentation broth dried. Thus, the invention allows for production and recovery of C3-C6 alcohols at low capital and reduced operating costs.