Abstract:
The invention relates to methods of using thiazole compounds of Formula I and Formula II and compositions thereof for treating diseases mediated by protein kinase B (PKB) such as cancer and other proliferative disorders where the variables have the definitions provided herein.
Abstract:
Compounds which directly inhibit IRE-1α activity in vitro, prodrugs, and pharmaceutically acceptable salts thereof. Such compounds and prodrugs are useful for treating diseases associated with the unfolded protein response and can be used as single agents or in combination therapies.
Abstract:
The invention relates to thiadiazole compounds useful for treating diseases mediated by protein kinase B (PKB). The invention also relates to the therapeutic use of such thiadiazole compounds and compositions thereof in treating disease states associated with abnormal cell growth, cancer, inflammation, and metabolic disorders.
Abstract:
Compounds which directly inhibit IRE-1α activity in vitro, prodrugs, and pharmaceutically acceptable salts thereof. Such compounds and prodrugs are useful for treating diseases associated with the unfolded protein response and can be used as single agents or in combination therapies.
Abstract:
The invention relates to heterocyclic compounds of Formula I and compositions thereof useful for treating diseases mediated by protein kinase B (PKB) where the variables have the definitions provided herein. The invention also relates to the therapeutic use of such compounds and compositions thereof in treating disease states associated with abnormal cell growth, cancer, inflammation, and metabolic disorders.
Abstract:
The invention relates to thiadiazole compounds useful for treating diseases mediated by protein kinase B (PKB). The invention also relates to the therapeutic use of such thiadiazole compounds and compositions thereof in treating disease states associated with abnormal cell growth, cancer, inflammation, and metabolic disorders.
Abstract:
The present invention discloses a novel quinobenzoxazine self-assembly complex on DNA and on the topoisomerase II-DNA complex. The related model is used to design a new series of quinobenzoxazines, pyridobenzophenoxazines, pyrridonaphthophenoxazines, and other related compounds that may exhibit anticancer or antibiotic activity. The anticancer activity of these compounds is thought to operate via stabilization of the topoisomerase II-DNA complex and/or interaction with G-quadruplexes, while the antibiotic activity of these compounds derives from their ability to inhibit gyrase, the bacterial type II topoisomerase.
Abstract:
A silyloxy aromatic derivative capable of alkylating a target biological molecule when activated by ionic strength. A sequence directed reagent may be constructed by conjugating a methyl silyloxy aromatic derivative to a hexamethylamino linker attached to either the 5' or 3' terminus of an oligonucleotide. Annealing this modified fragment of DNA to its complementary sequence allows for target modification subsequent to ionic activation. The product of this reaction is a covalent crosslink between the reagent and target strands resulting from an alkylation of DNA by the activated silyloxy aromatic derivative. In a preferred embodiment, a nitrophenyl or bromo group is attached to a methyl group of the silyloxy aromatic derivative. This reagent may be similarly linked to an oligonucleotide probe. Activation of the alkylating agent by an ionic signal (X) which may naturally occur, or may be introduced into the media containing the target molecule, such as by the introduction of a salt (MX).
Abstract:
Compounds which directly inhibit IRE-1α activity in vitro, prodrugs, and pharmaceutically acceptable salts there-of. Such compounds and prodrugs are useful for treating diseases associated with the unfolded protein response or with regulated IRE1-dependent decay (RIDD) and can be used as single agents or in combination therapies.
Abstract:
The invention provides compounds which directly inhibit IRE-1α activity in vitro, prodrugs, and pharmaceutically acceptable salts thereof. Such compounds and prodrugs are useful for treating diseases associated with the unfolded protein response and can be used as single agents or in combination therapies.