Abstract:
Provided is a method for producing a protein solution, including applying a pressure to a dispersion liquid containing a protein and a polar solvent in which the protein is dispersed, to obtain a protein solution containing the protein and the polar solvent in which the protein is dissolved.
Abstract:
A polypeptide porous body of the present invention is a porous body of a polypeptide derived from spider silk proteins. The polypeptide includes a water-insoluble polypeptide. The polypeptide porous body has an apparent density of 0.1 g/cm3 or less. A method for producing the polypeptide porous body includes: a solution production step in which the polypeptide is dissolved in at least one solvent selected from DMSO, DMF, and these with an inorganic salt, so as to obtain a solution of the polypeptide; a step in which the solution produced in the solution production step is substituted with a water-soluble solvent so as to obtain a polypeptide gel; and a step in which the polypeptide gel is dried. Thereby, the present invention provides a polypeptide porous body having excellent water absorbability and a polypeptide porous body suitable for application to a living body, and a method for producing the same.
Abstract:
A polar solvent solution of the present invention is a polar solvent solution in which a solute containing a polyamino acid is dissolved in a polar solvent. The solution has a moisture content of less than 5 mass % based on 100 mass % of the solution. A method for producing a polar solvent solution of the present invention includes changing a moisture content of the solution to adjust the viscosity of the solution. Further, another method for producing a polar solvent solution includes reducing a moisture content of the solution to increase the viscosity of the solution. Thus, the present invention provides a polar solvent solution that enables stable spinning and casting without lowering its viscosity when used as dopes for spinning, film, etc., and methods for producing the same.
Abstract:
A polypeptide porous body of the present invention is a porous body of a polypeptide derived from spider silk proteins. The polypeptide includes a water-insoluble polypeptide. The polypeptide porous body has an apparent density of 0.1 g/cm3 or less. A method for producing the polypeptide porous body includes: a solution production step in which the polypeptide is dissolved in at least one solvent selected from DMSO, DMF, and these with an inorganic salt, so as to obtain a solution of the polypeptide; a step in which the solution produced in the solution production step is substituted with a water-soluble solvent so as to obtain a polypeptide gel; and a step in which the polypeptide gel is dried. Thereby, the present invention provides a polypeptide porous body having excellent water absorbability and a polypeptide porous body suitable for application to a living body, and a method for producing the same.
Abstract:
A film of the present invention contains a polypeptide derived from spider silk proteins. The decomposition temperature of the film is 240 to 260° C. The film absorbs ultraviolet light having a wavelength of 200 to 300 nm and has a light transmittance of 85% or more at a wavelength of 400 to 780 nm. The film is transparent and colorless in a visible light region. A method for producing a film of the present invention includes: dissolving a polypeptide derived from spider silk proteins in a dimethyl sulfoxide solvent to prepare a dope; and cast-molding the dope on a surface of a base. Thus, the present invention provides a spider silk protein film that can be formed easily and has favorable stretchability, and a method for producing the same.
Abstract:
A polypeptide solution of the present invention is a polypeptide solution in which a polypeptide derived from natural spider silk proteins is dissolved in a solvent. The solvent contains at least one selected from the following (i)-(iii): (i) DMSO; (ii) DMSO with an inorganic salt; and (iii) DMF with an inorganic salt. Further, in the present invention, an artificial polypeptide fiber is obtained by: using the polypeptide solution as a dope solution; and extruding the dope solution from a spinneret into a desolvation bath so as to eliminate the solvent from the dope solution and form a fiber to produce an undrawn yarn. Moreover, in the present invention, a polypeptide is purified by subjecting the polypeptide solution to heat treatment and thereafter removing an undissolved substance therefrom. Thus, the present invention provides the polypeptide solution whose solute has high solubility and solvent itself is low cost, and that allows dissolution at high temperatures and has high safety: a method for producing an artificial polypeptide fiber: and a method for purifying a polypeptide.
Abstract:
A polypeptide solution of the present invention is a polypeptide solution in which a polypeptide derived from natural spider silk proteins is dissolved in a solvent. The solvent contains at least one selected from the following (i)-(iii): (i) DMSO; (ii) DMSO with an inorganic salt; and (iii) DMF with an inorganic salt. Further, in the present invention, an artificial polypeptide fiber is obtained by: using the polypeptide solution as a dope solution; and extruding the dope solution from a spinneret into a desolvation bath so as to eliminate the solvent from the dope solution and form a fiber to produce an undrawn yarn. Moreover, in the present invention, a polypeptide is purified by subjecting the polypeptide solution to heat treatment and thereafter removing an undissolved substance therefrom. Thus, the present invention provides the polypeptide solution whose solute has high solubility and solvent itself is low cost, and that allows dissolution at high temperatures and has high safety: a method for producing an artificial polypeptide fiber: and a method for purifying a polypeptide.
Abstract:
An object of the present invention is to provide a method for producing protein spinning capable of securing a stable strength by securing sufficient interlacing between fibers. The method for producing a protein spun yarn of the present invention includes a step (a) of preparing a raw material spun yarn including an uncrimped artificial fibroin fiber containing modified fibroin and a step (b) of bringing the raw material spun yarn into contact with an aqueous medium to crimp the artificial fibroin fiber.
Abstract:
The present invention relates to a highly contracted artificial fibroin fiber including a modified fibroin, in which a contraction percentage defined by the following equation exceeds 7%.
Contraction percentage={1−(length of contracted artificial fibroin fiber/length of artificial fibroin fiber before being brought into contact with water after spinning)}×100(%)
Abstract:
The present invention relates to a method for preparing a plasmid containing DNA that encodes a Type I polyketide synthase (PKS), the method including a step of introducing a DNA construct containing tandem repeats of DNA that encodes a PKS into a Bacillus subtilis competent cell.