Abstract:
The invention relates to compound of the formula (I) or its salt, wherein —R1, —R2, —R3, —R4, —R5, -M-, —X— and —Y═ are as defined in the description, their use of as, medicament, the process for their preparation and use for the treatment of JAK3 mediated diseases.
Abstract:
An object is to provide a semiconductor device including an oxide semiconductor film, which has stable electrical characteristics and high reliability. A stack of first and second material films is formed by forming the first material film (a film having a hexagonal crystal structure) having a thickness of 1 nm to 10 nm over an insulating surface and forming the second material film having a hexagonal crystal structure (a crystalline oxide semiconductor film) using the first material film as a nucleus. As the first material film, a material film having a wurtzite crystal structure (e.g., gallium nitride or aluminum nitride) or a material film having a corundum crystal structure (α-Al2O3, α-Ga2O3, In2O3, Ti2O3, V2O3, Cr2O3, or α-Fe2O3) is used.
Abstract translation:本发明的目的是提供一种具有稳定的电气特性和高可靠性的氧化物半导体膜的半导体装置。 通过在绝缘表面上形成厚度为1nm至10nm的第一材料膜(具有六方晶体结构的膜)形成第一和第二材料膜的叠层,并形成具有六方晶系结构的第二材料膜( 使用第一材料膜作为核的结晶氧化物半导体膜)。 作为第一材料膜,具有纤锌矿晶体结构的材料膜(例如氮化镓或氮化铝)或具有刚玉晶体结构的材料膜(α-Al 2 O 3,α-Ga 2 O 3,In 2 O 3,Ti 2 O 3,V 2 O 3,Cr 2 O 3,或 α-Fe 2 O 3)。
Abstract:
Manufactured is a transistor including an oxide semiconductor layer, a source electrode layer and a drain electrode layer overlapping with part of the oxide semiconductor layer, a gate insulating layer overlapping with the oxide semiconductor layer, the source electrode layer, and the drain electrode layer, and a gate electrode overlapping with part of the oxide semiconductor layer with the gate insulating layer provided therebetween, wherein, after the oxide semiconductor layer which is to be a channel formation region is irradiated with light and the light irradiation is stopped, a relaxation time of carriers in photoresponse characteristics of the oxide semiconductor layer has at least two kinds of modes: τ1 and τ2, τ1
Abstract:
A surgical assistance system for operating on biological tissue using a surgical tool attached to an arm of an automatically-controlled surgical instrument so that an optimal feed rate of the tool is calculated and outputted to the surgical instrument, the system including: a device for storing and voxelizing medical image data obtained from a biological tissue subject to surgery; a device for setting an operative location based on the shape of the biological tissue; a device for calculating a tool path along which the tool travels to perform surgery at an operative location; a device for determining the region of interference between the tool and the voxels; a device for determining the hardness of the biological tissue in the interference region; a device for calculating an optimal tool feed rate corresponding to the hardness; and a device for outputting the feed rate obtained by the calculations to the surgical instrument.
Abstract:
To improve problems with on-state current and off-state current of thin film transistors, a thin film transistor includes a pair of impurity semiconductor layers to which an impurity element imparting one conductivity type is added, provided with a space therebetween; a conductive layer which is overlapped, over the gate insulating layer, with the gate electrode and one of the pair of impurity semiconductor layers to which an impurity element imparting one conductivity type is added; and an amorphous semiconductor layer which is provided successively between the pair of impurity semiconductor layers to which an impurity element imparting one conductivity type is added in such a manner that the amorphous semiconductor layer extends over the gate insulating layer from the conductive layer and is in contact with both of the pair of impurity semiconductor layers to which an impurity element imparting one conductivity type is added.
Abstract:
An oxide semiconductor layer in which “safe” traps exist exhibits two kinds of modes in photoresponse characteristics. By using the oxide semiconductor layer, a transistor in which light deterioration is suppressed to the minimum and the electric characteristics are stable can be achieved. The oxide semiconductor layer exhibiting two kinds of modes in photoresponse characteristics has a photoelectric current value of 1 pA to 10 nA inclusive. When the average time τ1 until which carriers are captured by the “safe” traps is large enough, there are two kinds of modes in photoresponse characteristics, that is, a region where the current value falls rapidly and a region where the current value falls gradually, in the result of a change in photoelectric current over time.
Abstract:
To improve problems with on-state current and off-state current of thin film transistors, a thin film transistor includes a pair of impurity semiconductor layers to which an impurity element imparting one conductivity type is added, provided with a space therebetween; a conductive layer which is overlapped, over the gate insulating layer, with the gate electrode and one of the pair of impurity semiconductor layers to which an impurity element imparting one conductivity type is added; and an amorphous semiconductor layer which is provided successively between the pair of impurity semiconductor layers to which an impurity element imparting one conductivity type is added in such a manner that the amorphous semiconductor layer extends over the gate insulating layer from the conductive layer and is in contact with both of the pair of impurity semiconductor layers to which an impurity element imparting one conductivity type is added.
Abstract:
A microcrystalline semiconductor film with high crystallinity is manufactured. In addition, a thin film transistor with excellent electric characteristics and high reliability, and a display device including the thin film transistor are manufactured with high productivity. A deposition gas containing silicon or germanium is introduced from an electrode including a plurality of projecting portions provided in a treatment chamber of a plasma CVD apparatus, glow discharge is caused by supplying high-frequency power, and thereby crystal particles are formed over a substrate, and a microcrystalline semiconductor film is formed over the crystal particles by a plasma CVD method.
Abstract:
A mist generating device includes a mist generation vibrator, and a sealed vessel accommodating therein a fluid and provided at a side of a vibrating surface of the mist generation vibrator. A wall portion which constitutes a part of the sealed vessel and faces the mist generation vibrator has a thin film membrane and a mist of liquid outside the sealed vessel is generated by ultrasonic vibration transmitted from the mist generation vibrator via the fluid in the sealed vessel and the thin film membrane.
Abstract:
In acquisition of a micro image of a sample S by a micro image acquiring unit, when a plurality of image acquiring ranges are set for the sample S as an object of image acquisition, a plurality of corresponding focus information are set, and furthermore, when a plurality of partial images acquired by scanning the sample S by the micro image acquiring unit include a partial image including mixing of a plurality of image acquiring ranges, the focus information is switched in the middle of scanning of the partial image. With such a structure, even when a plurality of objects are contained in the sample S, images of the respective objects can be preferably acquired. Thereby, an image acquiring apparatus, an image acquiring method, and an image acquiring program which are capable of preferably acquiring images of a plurality of objects are realized even when the plurality of objects are contained in a sample S.