摘要:
An oxide etching method using low-medium density plasma includes a first etching step to pre-etch the oxide layer with low etching selectivity etchant to pre-form a contact opening and a monitoring opening. The low etching selectivity etchant can also etch the photoresist layer and the photoresist reaction residue. Then, a second etching with high etching selectivity on the oxide is performed to completely form the contact opening with a SAC property and the monitoring opening. The openings expose the substrate.
摘要:
A method for fabricating a MOS device is described. A first hard mask layer is formed over a substrate. The first hard mask layer is patterned and a portion of the substrate removed to form a first patterned hard mask, and a fin structure surrounded by a trench and extending in a first direction. An insulating layer is formed at the trench bottom. A gate conductive layer is formed on the insulating layer, extending in a second direction. A first implant process is performed using the first patterned hard mask as a mask to form first S/D extension regions in the sidewalls of the fin structure. The first patterned hard mask is removed to expose the top of the fin structure, and then a second implant process is performed to form second S/D extension region therein.
摘要:
A method of fabricating a field effect transistor with a fin structure is described. At least a fin structure is formed on a substrate. A planar insulation layer covering the fin structure is formed. A trench is formed in the insulation layer and intersects the fin structure both lengthwise. The trench is disposed over portions of the fin structure, and a lengthwise direction of the trench intersects a lengthwise direction of the fin structure, and thereby an upper portion of the fin structure is exposed to the trench. The exposed upper portion of the fin structure will serve as a gate channel region. A gate structure covering the upper portion is formed within the trench. The upper portion of the fin structure may be further trimmed.
摘要:
A finFET device includes a substrate, at least a first fin structure disposed on the substrate, a L-shaped insulator surrounding the first fin structure and exposing, at least partially, the sidewalls of the first fin structure, wherein the height of the L-shaped insulator is inferior to the height of the first fin structure in order to expose parts of the sidewalls surface of the first fin structure, and a gate structure disposed partially on the L-shaped insulator and partially on the first fin structure.
摘要:
A field effect transistor (FET) and a manufacturing method thereof are provided. The FET includes a substrate, a fin bump, an insulating layer, a charge trapping structure and a gate structure. The fin bump is disposed on the substrate. The insulating layer is disposed on the substrate and located at two sides of the fin bump. The charge trapping structure is disposed on the insulating layer and located at at least one side of the fin bump. A cross-section of the charge trapping structure is L-shaped. The gate structure covers the fin bump and the charge trapping structure.
摘要:
A method for fabricating a MOS device is described. A first hard mask layer is formed over a substrate. The first hard mask layer is patterned and a portion of the substrate removed to form a first patterned hard mask, and a fin structure surrounded by a trench and extending in a first direction. An insulating layer is formed at the trench bottom. A gate conductive layer is formed on the insulating layer, extending in a second direction. A first implant process is performed using the first patterned hard mask as a mask to form first S/D extension regions in the sidewalls of the fin structure. The first patterned hard mask is removed to expose the top of the fin structure, and then a second implant process is performed to form second S/D extension region therein.
摘要:
Application of an adhesion promoter to a cap layer and oxidation of the adhesion promoter prior to deposition of an organic interlevel dielectric thereon reduces via resistance problems during thermal cycles of semiconductor wafers embodying multiple levels of metal and organic interlevel dielectrics.
摘要:
A process for forming fusible links in an integrated circuit in which the fusible links are formed in the final metallization layer simultaneously with bonding pads. The process can be applied in the fabrication of integrated circuits that employ copper metallization and low k dielectric materials. After patterning the final metal (aluminum) layer to form the fusible links and the bonding pads, a dielectric etch stop layer is formed over the final metal layer before a passivation layer is deposited. The passivation layer is removed in areas over the fusible links and the bonding pads. The dielectric etch stop layer is removed either from above the bonding pads only, or from above both the bonding pads and the fusible links.
摘要:
A method for forming a three dimensional semiconductor structure which has vertical capacitor(s) but not horizontal capacitor(s). The method essentially at least includes these steps of forming bottom plates within dielectric layers, forming another dielectric layer over bottom plates, removing all dielectric layers over bottom plates, forming optional liner(s) and capacitor dielectric layers on bottom plates, and forming top plates over capacitor dielectric layers. Note that shape of bottom plates is alike to the bottom connection and verticle fingers, also note that each gap within bottom plates is filled by both capacitor dielectric layer and top plate.
摘要:
A method of forming borderless contacts is provided. A substrate is provided. The substrate has at least a logic region and a memory region. A MOS transistor and a STI structure are formed on the logic region. The MOS transistor comprises a gate, a source/drain region and a cap insulating layer on the gate. An etching stop layer is formed on the substrate to cover the MSO transistor and the STI structure. A dielectric layer is formed in the etching stop layer. The dielectric layer, the etching stop layer and the cap insulating layer are partially removed to form a first opening according to the pattern of a first mask layer. The first opening exposes the gate. According to the pattern of a second mask layer, the dielectric layer and the etching stop layer are partially removed to form openings, which expose the source/drain region, in the dielectric layer.