Abstract:
A superconducting switching device is provided in which a base electrode layer of a sandwich type superconducting tunnel junction and a control line film are formed at the same level. The control line film having a high accuracy pattern can be formed, and the number of overall layers can also be reduced.
Abstract:
Superconducting device include a type having a structure of a superconductor--a normal-conductor (or a semiconductor)--a superconductor, and a type having a superconducting weak-link portion between superconductors. The superconductors constituting the superconducting device are made of an oxide of either of perovskite type and K.sub.2 NiF.sub.4 type crystalline structures, containing at least one element selected from the group consisting of Ba, Sr, Ca, Mg, and Ra; at least one element selected from the group consisting of La, Y, Ce, Sc, Sm, Eu, Er, Gd, Ho, Yb, Nd, Pr, Lu, and Tb; Cu; and O. In addition, the c-axis of the crystal of the superconductor is substantially perpendicular to the direction of current flowing through this superconductor.
Abstract:
A superconducting device low in power dissipation and high in operating speed is fabricated by use of a combination of a superconductor material and a semiconductor material. The superconducting device having a low power dissipation and high operating speed characteristic according to the present invention is suitable for configuring a large-scale integrated circuit.
Abstract:
In a superconducting device wherein the value of a superconducting current to flow between two superconducting electrodes provided in contact with a semiconductor is controlled by a control electrode provided between the superconducting electrodes, high impurity concentration regions are formed within the semiconductor so as to lie in contact with the superconducting electrodes and to extend to under ends of the control electrode.
Abstract:
Superconducting electrodes are formed on a semiconductor which serves as a channel. A control electrode is disposed through an insulator film or a p-n junction on the side of the semiconductor which is opposite to the semiconductor side on which the superconducting electrode is formed. A superconducting current which flows between the superconducting electrodes across the semiconductor is controlled by an electric signal which is applied to the control electrode, thereby enhancing the current gain.
Abstract:
A process for controlling an oxygen content of a non-superconductive or superconductive oxide is provided, in which a beam of particles such as ions, electrons or neutrons or an electromagnetic radiation is applied to the non-superconductive or superconductive oxide of a perovskite type such as YBa.sub.2 Cu.sub.3 O.sub.7-x, thereby increasing or reducing the oxygen content of the oxide at the sites of oxygen in the crystal lattice of the oxide. Furthermore, a superconductive device such as a superconductive magnet, superconductive power transmission wire, superconductive transformer, superconductive shield, permanent current switch and electronic element is made by utilizing the process for controlling the oxygen concentration of the superconductive oxide.
Abstract:
A SQUID for detecting a weak magnetic field is constructed of a sensor coil which detects a signal magnetic flux, and a superconducting loop which is magnetically coupled with the sensor coil to generate a periodic voltage corresponding to an interlinking magnetic flux from the sensor coil. The periodic voltage from the SQUID is amplified, and is taken out. The periodic voltage taken out is synchronously detected by a phase-sensitive detecting amplifier. The synchronously-detected signal is converted into a light signal, which is fed back to the SQUID. The light signal fed back is converted into an electric signal by a superconducting phototransistor which is arranged in a cryogenic atmosphere. A magnetic flux corresponding to the electric signal from the superconducting phototransistor is fed back to the superconducting loop by a feedback coil.
Abstract:
An asynchronous transfer mode switching system for improving switching throughput and averting complicated and difficult timing design. In operation, synchronous cell strings from external transmission lines are converted to asynchronous cell strings which are switched by a space-division switch array. The switched asynchronous cell strings are reconverted to synchronous cell strings for output onto external transmission lines. The space-division switch array comprises a plurality of unit switches in stages, each unit switch having input terminals and output terminals. The unit switches each include a timing control circuit that causes a switching operation to start upon detecting two states concurrently: a stored state of a cell to be switched, and a storage-ready state of a destination for the switched cell. The scheme allows the system to operate in an asynchronous manner.
Abstract:
An IC card (107) sends its identification code in units of one bit in response to a question from a controller (103). The controller sends back to the IC card the received one bit of the identification code. The IC card compares the received and sent bits. If both are equal, the IC card sends the next one bit to the controller and if not, refrains from sending the next one bit. Thus, even when the number of IC cards which are to be identified and the number of IC cards which send their identification codes are simultaneously large, a reduction in the identification efficiency is suppressed to within a small value.
Abstract:
Disclosed are methods of forming superconducting devices including a type having a structure of a superconductor--a normal-conductor (or a semiconductor)--a superconductor, and a type having a superconducting weak-link portion between superconductors.The superconductors constituting the superconducting device are made of an oxide of either of perovskite type and K.sub.2 NiF.sub.4 type crystalline structures, containing at least one element selected from the group consisting of Ba, Sr, Ca, Mg, and Ra; at least one element selected from the group consisting of La, Y, Ce, Sc, Sm, Eu, Er, Gd, Ho, Yb, Nd, Pr, Lu, and Tb; Cu; and O. In addition, the c-axis of the crystal of the superconductor is substantially perpendicular to the direction of current flowing through this superconductor.