Abstract:
A porous dielectric layer is formed on a substrate. Aluminum is incorporated in the porous dielectric layer with a pattern process using an Aluminum gas precursor. The incorporated Aluminum improves the mechanical properties of the porous dielectric layer.
Abstract:
Systems and techniques relating to etching vias in integrated circuit devices, in one implementation, include: providing a dielectric material and a conductive material, removing a first portion of the dielectric material to form a hole in the dielectric material, performing a tapering etch that removes a second portion of the dielectric material to form a via that touches down on the conductive material, and laterally expanding a bottom dimension of the via without a significant increase in a depth of the via. The technique can also include: providing a substrate with the dielectric material and the conductive material attached without an associated etch stop layer, removing the first portion at a high etch rate, controlling ion bombardment and plasma chemistry to form a sloped bottom of the via, and performing an intensive ion bombarding plasma etch, laterally expanding the via bottom.
Abstract:
A method for sealing a porous dielectric layer atop a substrate, wherein the dielectric layer is patterned to form at least a trench and at least a via, comprises applying a first plasma to a surface of the dielectric layer to silanolize the surface, treating the surface of the dielectric layer with a silazane to form a monolayer of silane molecules on the surface, and applying a second plasma to the surface of the dielectric layer to induce a polymerization of at least a portion of the silane molecules. The polymerized silane molecules form a cross-linked matrix that builds over a substantial portion of the surface of the dielectric layer and seals at least some of the exposed pores.
Abstract:
The invention provides a stacked wafer structure with decreased failures. In one embodiment, there is a barrier layer deposited on exposed surfaces of conductors that extend across a distance between first and second device structures. The barrier layer may prevent diffusion and electromigration of the conductor material, which may decrease incidences of shorts and voids in the stacked wafer structure.
Abstract:
A method of patterning a porous dielectric material that includes an ash process to treat the porous dielectric material. The treated porous dielectric material allows for the formation of a substantially continuous barrier layer, which can inhibit diffusion of, for example, a conductive material into to the dielectric material. Other embodiments are described and claimed.
Abstract:
Radiant energy may be applied to a photochemically susceptible etching or conditioning solution to enable precise control of the removal of material or alteration of the top surface of a wafer during the fabrication of semiconductor integrated circuits. A particular condition may be detected during the course of photoactivated generation of free radicals or molecular activation to control the further generation of said species by controlling the radiant energy exposure of a wafer.
Abstract:
Electric fields may be advantageously used in various steps of photolithographic processes. For example, prior to the pre-exposure bake, photoresists that have been spun-on the wafer may be exposed to an electric field to orient aggregates or other components within the unexposed photoresist. By aligning these aggregates or other components with the electric field, line edge roughness may be reduced, for example in connection with 193 nanometer photoresist. Likewise, during exposure, electric fields may be applied through uniquely situated electrodes or using a radio frequency coil. In addition, electric fields may be applied at virtually any point in the photolithography process by depositing a conductive electrode, which is subsequently removed during development. Finally, electric fields may be applied during the developing process to improve line edge roughness.