Abstract:
A system and method for updating power supply voltages due to variations from aging are described. A functional unit includes a power supply monitor capable of measuring power supply variations in a region of the functional unit. An age counter measures an age of the functional unit. A control unit notifies the power supply monitor to measure an operating voltage reference. When the control unit receives a measured operating voltage reference, the control unit determines an updated age of the region different from the current age based on the measured operating voltage reference. The control unit updates the age counter with the corresponding age, which is younger than the previous age in some cases due to the region not experiencing predicted stress and aging. The control unit is capable of determining a voltage adjustment for the operating voltage reference based on an age indicated by the age counter.
Abstract:
An electronic device includes an accelerated processing unit (APU) and multiple elements. The APU performs operations for a platform boost and throttle (PBT) controller. For the operations, the APU receives a platform electrical power limit, the platform electrical power limit being a limit on a total electrical power allowed to be consumed by a group of the elements at a given time. The APU then determines a present platform electrical power consumption. The APU next adjusts one or more operating parameters for specified elements from among the group of elements to control electrical power consumption by the specified elements based on a relationship between the present platform electrical power consumption and the platform electrical power limit.
Abstract:
An apparatus includes a processor, a sleep state duration prediction module, and a system management unit. The sleep state duration prediction module is configured to predict a sleep state duration for component of the processing device. The system management unit is to transition the component into a sleep state selected from a plurality of sleep states based on a comparison of the predicted sleep state duration to at least one duration threshold. Each sleep state of the plurality of sleep states is a lower power state than a previous sleep state of the plurality of sleep states.
Abstract:
Platform power management includes boosting performance in a platform power boost mode or restricting performance to keep a power or temperature under a desired threshold in a platform power cap mode. Platform power management exploits the mutually exclusive nature of activities and the associated headroom created in a temperature and/or power budget of a server platform to boost performance of a particular component while also keeping temperature and/or power below a threshold or budget.
Abstract:
A processing system includes one or more power supply monitors (PSMs) to measure one or more first voltages corresponding to one or more locations in the processing system. The measurements are performed concurrently with the processing system executing one or more code loops. The processing system also includes calibration logic to modify a second voltage provided to the processing system based on a comparison of a reference voltage and the one or more first voltages. The reference voltage is determined based on previous execution of the one or more code loops by the processing system.
Abstract:
The disclosed voltage regulator circuit includes a capacitor bank configured for a first voltage step corresponding to a voltage undershoot, and a shunt circuit configured for a second voltage step exceeding the first voltage step. Various other methods, systems, and computer-readable media are also disclosed.
Abstract:
An electronic device includes an accelerated processing unit (APU) and multiple elements. The APU performs operations for a platform boost and throttle (PBT) controller. For the operations, the APU receives a platform electrical power limit, the platform electrical power limit being a limit on a total electrical power allowed to be consumed by a group of the elements at a given time. The APU then determines a present platform electrical power consumption. The APU next adjusts one or more operating parameters for specified elements from among the group of elements to control electrical power consumption by the specified elements based on a relationship between the present platform electrical power consumption and the platform electrical power limit.
Abstract:
Platform power management includes boosting performance in a platform power boost mode or restricting performance to keep a power or temperature under a desired threshold in a platform power cap mode. Platform power management exploits the mutually exclusive nature of activities and the associated headroom created in a temperature and/or power budget of a server platform to boost performance of a particular component while also keeping temperature and/or power below a threshold or budget.
Abstract:
A processing system includes one or more power supply monitors (PSMs) to measure one or more first voltages corresponding to one or more locations in the processing system. The measurements are performed concurrently with the processing system executing one or more code loops. The processing system also includes calibration logic to modify a second voltage provided to the processing system based on a comparison of a reference voltage and the one or more first voltages. The reference voltage is determined based on previous execution of the one or more code loops by the processing system.
Abstract:
In one form, a clock doubler includes a switched inverter, an exclusive logic circuit, and a control signal generation circuit. The switched inverter has first and second control inputs for respectively receiving first and second control signals, a signal input for receiving a clock input signal, and an output. The exclusive logic circuit has a first input for receiving the clock input signal, a second input coupled to the output of the switched inverter, and an output for providing a clock output signal. A control signal generation circuit provides the first and second control signals in response to the clock output signal. The clock doubler may be used in a clock distribution circuit for an integrated circuit that also includes a phase locked loop for providing the input clock signals, and a plurality of clock sub-domains each having one of the clock doublers.