Abstract:
Embodiments of methods and apparatus for reducing warpage of a substrate are provided herein. In some embodiments, a method for reducing warpage of a substrate includes: applying an epoxy mold over a plurality of dies on the substrate in a dispenser tool; placing the substrate on a pedestal in a curing chamber, wherein the substrate has an expected post-cure deflection in a first direction; inducing a curvature on the substrate in a direction opposite the first direction; and curing the substrate by heating the substrate in the curing chamber.
Abstract:
Apparatus and methods use a unique process kit to protect a processing volume of a process chamber. The process kit includes a shield with a frame configured to be insertable into a shield and a foil liner composed of a metallic material that is attachable to the frame at specific points. The specific attachment points are spaced apart to produce an amount of flexibility based on a malleability of the metallic material. The amount of flexibility ranges from approximately 2.5 to approximately 4.5.
Abstract:
Methods and apparatus for processing a substrate are described herein. A vacuum multi-chamber deposition tool can include a degas chamber with both a heating mechanism and a variable frequency microwave source. The methods described herein use variable frequency microwave radiation to increased quality and speed of the degas process without damaging the various components.
Abstract:
In some embodiments, an apparatus for processing substrates includes: a substrate support within a processing chamber; a light source directly coupled to a light isolator and configured to deliver incident light to and through a first surface of the substrate when disposed on the substrate support; an optical fiber having a first end spaced apart a first distance from the first surface and a second end directly coupled to the light source via a coupling element; a photodetector directly coupled to the second end of the optical fiber via the coupling element and configured to receive a first reflected light beam reflected off the first surface and a second reflected light beam reflected off an inner boundary of a second surface of the substrate, opposite the first surface; and a signal processor to determine a temperature of the substrate based on the first and second reflected light beams.
Abstract:
Methods and apparatus for processing a substrate are described herein. A vacuum multi-chamber deposition tool can include a degas chamber with both a heating mechanism and a variable frequency microwave source. The methods described herein use variable frequency microwave radiation to increased quality and speed of the degas process without damaging the various components.
Abstract:
Methods and apparatus for processing a substrate are described herein. A vacuum multi-chamber deposition tool can include a degas chamber with both a heating mechanism and a variable frequency microwave source. The methods described herein use variable frequency microwave radiation to increased quality and speed of the degas process without damaging the various components.
Abstract:
Embodiments of bipolar electrostatic chucks are provided herein. In some embodiments, a bipolar electrostatic chuck, includes: the electrostatic chuck; and a plurality of electrodes disposed in the electrostatic chuck, wherein the plurality of electrodes include a positive electrode arranged in a first pattern comprising a plurality of first arcuate bands coupled together via first connection fingers that extend radially therebetween and a negative electrode arranged in a second pattern comprising a plurality of second arcuate bands coupled together via second connection fingers that extend radially therebetween, wherein the plurality of first arcuate bands are arranged in an alternating pattern with the plurality of second arcuate bands, wherein there is a gap between the first pattern and the second pattern.
Abstract:
An electrostatic chuck assembly including a body including a body recess and a heat transfer plate disposed in the body recess, wherein the heat transfer plate includes an upper surface, a lower surface, a first opening, and a second opening. The electrostatic chuck assembly further includes an RF transmission tube configured to transfer RF power to the lower surface of the heat transfer plate. The electrostatic chuck assembly further includes a puck bonded to the upper surface of the heat transfer plate. The electrostatic chuck assembly further includes a first chucking electrode disposed in the first opening and a second chucking electrode is disposed in the second opening, wherein the first and second chucking electrodes are configured to transfer a chucking voltage to the puck.
Abstract:
Methods and apparatus for cleaning tooling parts in a substrate processing tool are provided herein. In some embodiments, a method of cleaning tooling parts in a substrate processing tool includes placing one or more dirty tools on a holder in a bonding chamber of a multi-chamber processing tool; transferring the holder from the bonding chamber to a cleaning chamber of the multi-chamber processing tool; cleaning the one or more dirty tools in the cleaning chamber to produce one or more cleaned tools; inspecting the one or more cleaned tools in an inspection chamber of the multi-chamber processing tool; and transferring the one or more cleaned tools to the bonding chamber
Abstract:
A system for degassing substrates provides reduced infrared sources in a degas chamber. In some embodiments, the system includes a degas chamber with a microwave source and an infrared temperature sensor positioned in a bottom of the degas chamber, at least one hoop with an annular shape that is configured to support or lift a substrate and is formed from at least one first material that is opaque to microwaves and has an emissivity of 0.1 or less, and at least one actuator with a movable vertical shaft. Each of the at least one actuator is attached under one of the hoops at an outer perimeter of the hoop. The portion of the movable vertical shaft that is exposed to microwaves from the microwave source in the degas chamber is formed from at least one second material that is opaque to microwaves and has an emissivity of 0.1 or less.