Abstract:
A substrate has first and second target structures formed thereon by a lithographic process. Each target structure has two-dimensional periodic structure formed in a single material layer on a substrate using first and second lithographic steps, wherein, in the first target structure, features defined in the second lithographic step are displaced relative to features defined in the first lithographic step by a first bias amount that is close to one half of a spatial period of the features formed in the first lithographic step, and, in the second target structure, features defined in the second lithographic step are displaced relative to features defined in the first lithographic step by a second bias amount close to one half of said spatial period and different to the first bias amount. An angle-resolved scatter spectrum of the first target structure and an angle-resolved scatter spectrum of the second target structure is obtained, and a measurement of a parameter of a lithographic process is derived from the measurements using asymmetry found in the scatter spectra of the first and second target structures.
Abstract:
An inspection apparatus, method, and system are described herein. An example inspection apparatus includes an optical system and an imaging system. The optical system may be configured to output an illumination beam incident on a target including one or more features, the illumination beam polarized with a first polarization when incident on the target. The imaging system may be configured to obtain intensity data representing at least a portion of the illumination beam scattered by the one or more features, where the portion of the illumination beam has a second polarization orthogonal to the first polarization. The inspection apparatus may be further configured to generate image data representing an image of each of the feature(s) based on the intensity data, and determine a measurement of a parameter of interest associated with the feature(s) based on an amount of the portion of the illumination beam having the second polarization.
Abstract:
A method of determining a process window for a lithographic process, the process window describing a degree of acceptable variation in at least one processing parameter during the lithographic process. The method includes obtaining a set of output parameter values derived from measurements performed at a plurality of locations on a substrate, following pattern transfer to the substrate using a lithographic process, and obtaining a corresponding set of actual processing parameter values that includes an actual value of a processing parameter of the lithographic process during the pattern transfer at each of the plurality of locations. The process window is determined from the output parameter values and the actual processing parameter values. This process window may be used to improve the selection of the processing parameter at which a subsequent lithographic process is performed.
Abstract:
A method of determining focus of a lithographic apparatus has the following steps. Using the lithographic process to produce first and second structures on the substrate, the first structure has features which have a profile that has an asymmetry that depends on the focus and an exposure perturbation, such as dose or aberration. The second structure has features which have a profile that is differently sensitive to focus than the first structure and which is differently sensitive to exposure perturbation than the first structure. Scatterometer signals are used to determine a focus value used to produce the first structure. This may be done using the second scatterometer signal, and/or recorded exposure perturbation settings used in the lithographic process, to select a calibration curve for use in determining the focus value using the first scatterometer signal or by using a model with parameters related to the first and second scatterometer signals.
Abstract:
Disclosed is a method of monitoring a focus parameter during a lithographic process. The method comprises acquiring first and second measurements of, respectively first and second targets, wherein the first and second targets have been exposed with a relative best focus offset. The method then comprises determining the focus parameter from first and second measurements. Also disclosed are corresponding measurement and lithographic apparatuses, a computer program and a method of manufacturing devices.
Abstract:
A method of determining a parameter of a patterning process, the method including: obtaining a detected representation of radiation redirected by a structure having geometric symmetry at a nominal physical configuration, wherein the detected representation of the radiation was obtained by illuminating a substrate with a radiation beam such that a beam spot on the substrate was filled with the structure; and determining, by a hardware computer system, a value of the patterning process parameter based on optical characteristic values from an asymmetric optical characteristic distribution portion of the detected radiation representation with higher weight than another portion of the detected radiation representation, the asymmetric optical characteristic distribution arising from a different physical configuration of the structure than the nominal physical configuration.
Abstract:
A method of measuring overlay uses a plurality of asymmetry measurements from locations (LOI) on a pair of sub-targets (1032, 1034) formed on a substrate (W). For each sub-target, the plurality of asymmetry measurements are fitted to at least one expected relationship (1502, 1504) between asymmetry and overlay, based on a known bias variation deigned into the sub-targets. Continuous bias variation in one example is provided by varying the pitch of top and bottom gratings (P1/P2). Bias variations between the sub-targets of the pair are equal and opposite (P2/P1). Overlay (OV) is calculated based on a relative shifht (xs) between the fitted relationships for the two sub-targets. The step of fitting asymmetry measurements to at least one expected relationship includes wholly or partially discounting measurements (1506, 1508, 1510) that deviate from the expected relationship and/or fall outside a particular segment of the fitted relationship.
Abstract:
Disclosed is method of optimizing bandwidth of measurement illumination for a measurement application, and an associated metrology apparatus. The method comprises performing a reference measurement with reference measurement illumination having a reference bandwidth and performing one or more optimization measurements, each of said one or more optimization measurements being performed with measurement illumination having a varied candidate bandwidth. The one or more optimization measurements are compared with the reference measurement; and an optimal bandwidth for the measurement application is selected based on the comparison.
Abstract:
A method of determining overlay of a patterning process, the method including: illuminating a substrate with a radiation beam such that a beam spot on the substrate is filled with one or more physical instances of a unit cell, the unit cell having geometric symmetry at a nominal value of overlay; detecting primarily zeroth order radiation redirected by the one or more physical instances of the unit cell using a detector; and determining, by a hardware computer system, a non-nominal value of overlay of the unit cell from values of an optical characteristic of the detected radiation.
Abstract:
A method of configuring a parameter determination process, the method including: obtaining a mathematical model of a structure, the mathematical model configured to predict an optical response when illuminating the structure with a radiation beam and the structure having geometric symmetry at a nominal physical configuration; using, by a hardware computer system, the mathematical model to simulate a perturbation in the physical configuration of the structure of a certain amount to determine a corresponding change of the optical response in each of a plurality of pixels to obtain a plurality of pixel sensitivities; and based on the pixel sensitivities, determining a plurality of weights for combination with measured pixel optical characteristic values of the structure on a substrate to yield a value of a parameter associated with change in the physical configuration, each weight corresponding to a pixel.