Abstract:
A Schottky junction diode device having improved performance is fabricated in a conventional CMOS process. A substrate including a material doped to a first conductivity type is formed. A first well is disposed over the substrate. The first well includes a material doped to a second conductivity type opposite that of the first conductivity type. A region of metal-containing material is disposed over the first well to form a Schottky junction at an interface between the region of metal-containing material and the first well. In one embodiment, a first well contact is disposed in a portion of the first well. A second well is disposed over the substrate wherein the second well includes a material doped to the first conductivity type. In one embodiment, the first well and the second well are not in direct contact with one another.
Abstract:
A multilayer dielectric stack is provided which has alternating layers of a high-k material and an interposing material. The presence of the interposing material and the thinness of the high-k material layers reduces or eliminate effects of crystallization within the high-k material, even at relatively high annealing temperatures. The high-k dielectric layers are a metal oxide of preferably zirconium or hafnium. The interposing layers are preferably amorphous aluminum oxide, aluminum nitride, or silicon nitride. Because the layers reduce the effects of crystalline structures within individual layers, the overall tunneling current is reduced. Also provided are atomic layer deposition, sputtering, and evaporation as methods of depositing desired materials for forming the above-mentioned multilayer dielectric stack.
Abstract:
A high-k dielectric films is provided, which is doped with divalent or trivalent metals to vary the electron affinity, and consequently the electron and hole barrier height. The high-k dielectric film is a metal oxide of either zirconium (Zr) or hafnium (Hf), doped with a divalent metal, such as calcium (Ca) or strontium (Sr), or a trivalent metal, such as aluminum (Al), scandium (Sc), lanthanum (La), or yttrium (Y). By selecting either a divalent or trivalent doping metal, the electron affinity of the dielectric material can be controlled, while also providing a higher dielectric constant material then silicon dioxide. Preferably, the dielectric material will also be amorphous to reduce leakage caused by grain boundaries. Also provided are sputtering, CVD, Atomic Layer CVD, and evaporation deposition methods for the above-mentioned, doped high dielectric films.
Abstract:
Apparatus, systems, and methods may include managing electrostatic discharge events by using a semiconductor device having a non-aligned gate to implement a snap-back voltage protection mechanism. Such devices may be formed by doping a semiconductor substrate to form a first conductive region as a well, forming one of a source region and a drain region in the well, depositing a layer of polysilicon on the substrate to establish a gating area that does not overlap the one of the source region and the drain region, and forming an integrated circuit supported by the substrate to couple to the one of the source region and the drain region to provide snap-back voltage operation at a node between the integrated circuit and the source or drain region. Additional apparatus, systems, and methods are disclosed.
Abstract:
RFID tags are assembled through affixing an antenna to an integrated circuit (IC) by forming one or more capacitors coupling the antenna and the IC with the dielectric material of the capacitor(s) including a non-conductive covering layer of the IC, a non-conductive covering layer of the antenna such as an oxide layer, and/or an additionally formed dielectric layer. Top and bottom plates of the capacitor(s) are formed by the antenna traces and one or more patches on a top surface of the IC.
Abstract:
A translation system for translating source text from a first language to target text in a second language. The system comprises a translation memory (TM) module that stores translation segments. The TM module is operable to generate a TM target text output in response to source text. A statistical translation machine (SMT) module is configured to generate translations on the basis of statistical models whose parameters are derived from the analysis of bilingual text corpora. The SMT module is operable to generate a SMT target text output in response to source text. An extractor is configured to extract features from the TM target text output and the SMT target text output. A vector generator is configured to generate a vector with a unified feature set derived from the extracted features and features associated with the SMT module and the TM module. A recommender is operable to read the vector and determine whether the TM target text output or the SMT target text output is optimum for post editing.
Abstract:
A non-volatile memory (NVM) circuit is provided, that includes at least a first and second NVM sub-array. The first sub-array is built from first memory cells. The second NVM sub-array is built from second memory cells that are constructed differently from the first memory cells. The NVM sub-arrays share a support circuit. In some embodiments the sub-arrays can be constructed, so that they exhibit different characteristics tailored to their intended use. For example one sub-array might be tailored for data retention, while the next sub-array for programming endurance, still another for write disturb immunity.
Abstract:
A Schottky junction diode device having improved performance and a multiple well structure is fabricated in a conventional CMOS process. A substrate including a material doped to a first conductivity type is formed. A first well is disposed over the substrate. The first well includes a material doped differently, such as to a second conductivity type opposite that of the first conductivity type. A second well is disposed within the first well. A region of metal-containing material is disposed in the second well to form a Schottky junction at an interface between the region of metal-containing material and the second well. In one embodiment, a second well contact is disposed in a portion of the second well.
Abstract:
A MFMOS one transistor memory structure for ferroelectric non-volatile memory devices includes a high dielectric constant material such as ZrO2, HfO2, Y2O3, or La2O3, or the like, or mixtures thereof, to reduce the operation voltage and to increase the memory window and reliability of the device.
Abstract translation:用于铁电非易失性存储器件的MFMOS单晶体管存储器结构包括诸如ZrO 2,HfO 2,Y 2 O 3或La 2 O 3等的高介电常数材料或其混合物,以减少操作电压并增加存储窗口, 设备的可靠性。
Abstract:
A multilayer dielectric stack is provided which has alternating layers of a high-k material and an interposing material. The presence of the interposing material and the thinness of the high-k material layers reduces or eliminate effects of crystallization within the high-k material, even at relatively high annealing temperatures. The high-k dielectric layers are a metal oxide of preferably zirconium or hafnium. The interposing layers are preferably amorphous aluminum oxide, aluminum nitride, or silicon nitride. Because the layers reduce the effects of crystalline structures within individual layers, the overall tunneling current is reduced. Also provided are atomic layer deposition, sputtering, and evaporation as methods of depositing desired materials for forming the above-mentioned multilayer dielectric stack.