Abstract:
A method of producing high modulus and strength polymer materials includes compressive rolling a semicrystalline polymer material in at least two different axial directions of the material; and axially orienting at least a portion of the compressive rolled material to a draw ratio less than the ultimate elongation or the elongation % at break of the material.
Abstract:
A multilayered polymer composite film includes a first polymer material forming a polymer matrix and a second polymer material coextruded with the first polymer material. The second polymer material forms a plurality of fibers embedded within the polymer matrix. The fibers have a rectangular cross-section.
Abstract:
A multilayered composite shape memory material includes a coextruded first polymer layer of a first polymer material and a second polymer layer of a second polymer material. The composite shape memory material after thermomechanical programming being capable of undergoing at least one temperature induced shape transition from a temporary shape to a permanent shape. The first polymer layer defines a hard segment of the shape memory material that provides the shape memory material with the permanent shape, and the second polymer layer defines a switching segment of the shape memory material that provides the shape memory material with the temporary shape.
Abstract:
A polymer nanofiber scaffold includes a plurality of melt extruded nanofibers that are chemically modified to append surface functionality to the nanofibers.
Abstract:
A multilayer polymer dielectric film includes a stack of coextruded, alternating first dielectric layers and second dielectric layers that receive electrical charge. The first dielectric layers include a first polymer material and the second dielectric layers include a second polymer material different from the first polymer material. The first polymer material has a permittivity greater than the second polymer material. The second polymer material has a breakdown strength greater than the first polymer material. Adjoining first dielectric layers and second dielectric layers define an interface between the layers that delocalizes electrical charge build-up in the layers. The stack has substantially the crystallographic symmetry before and during receiving electrical charge.
Abstract:
A method of fabricating a gas separation membrane includes providing a coextruded multilayer film that includes a first polymer layer formed of a first polymer material and a second polymer layer formed of a second polymer material, the first polymer material having a first gas permeability. The coextruded multilayer film is axially oriented such that the second polymer layer has a second gas permeability that is greater than the first gas permeability.
Abstract:
A multilayered composite shape memory material includes a coextruded first polymer layer of a first polymer material and a second polymer layer of a second polymer material. The composite shape memory material after thermomechanical programming being capable of undergoing at least one temperature induced shape transition from a temporary shape to a permanent shape. The first polymer layer defines a hard segment of the shape memory material that provides the shape memory material with the permanent shape, and the second polymer layer defines a switching segment of the shape memory material that provides the shape memory material with the temporary shape.
Abstract:
A multilayered polymer composite film includes a first polymer material forming a polymer matrix and a second polymer material coextruded with the first polymer material. The second polymer material forms a plurality of fibers embedded within the polymer matrix. The fibers have a rectangular cross-section.
Abstract:
A multilayer polymer dielectric film includes a stack of coextruded, alternating first dielectric layers and second dielectric layers that receive electrical charge. The first dielectric layers include a first polymer material and the second dielectric layers include a second polymer material different from the first polymer material. The first polymer material has a permittivity greater than the second polymer material. The second polymer material has a breakdown strength greater than the first polymer material. Adjoining first dielectric layers and second dielectric layers define an interface between the layers that delocalizes electrical charge build-up in the layers. The stack has substantially the crystallographic symmetry before and during receiving electrical charge.
Abstract:
A security marking has a physically unclonable function (PUF) wherein the PUF includes a disordered multilayer photonic crystal structure having an electromagnetic transmission and/or reflection spectrum and/or spectra upon receipt of electromagnetic radiation within a photonic bandgap region of the structure that is unique to the structure.