Abstract:
Light emitter components and methods having improved electrical contacts and related methods are disclosed. In one embodiment, a light emitter component can include a submount, at least one light emitter chip on the submount, and at least one electrical contact disposed along portions of at least three external surfaces of the submount. The at least one electrical contact can be electrically connected to the at least one light emitter chip.
Abstract:
Light emitting diodes, components, and related methods, with improved performance over existing light emitting diodes. In some embodiments, light emitter devices included herein include a submount, a light emitter, a light affecting material, and a wavelength conversion component. Wavelength conversion components provided herein include a transparent substrate having an upper surface and a lower surface, and a phosphor compound disposed on the upper surface or lower surface, wherein the wavelength conversion component is configured to alter a wavelength of a light emitted from a light source when positioned proximate to the light source.
Abstract:
Light emitting diode (LED) devices and methods. An example apparatus can include a substrate, one or more LEDs, light-transmissive encapsulation material, and a reflective material covering a portion of the encapsulation material to form a defined opening. The opening allows light emitted from an LED to pass through in a prescribed manner. In some embodiments, the apparatus can be subsequently treated to modify the surface having the opening. In other embodiments, the reflective material can be disposed on a lateral surface of the encapsulation material to reflect light in a desired direction.
Abstract:
Light emitting diodes, components, and related methods, with improved performance over existing light emitting diodes. In some embodiments light emitter devices included herein include a submount, a light emitter, a light affecting material, and a wavelength conversion component. Wavelength conversion components provided herein include a transparent substrate having an upper surface and a lower surface, and a phosphor compound disposed on the upper surface or lower surface, wherein the wavelength conversion component is configured to alter a wavelength of a light emitted from a light source when positioned proximate to the light source.
Abstract:
Light emitting diode (LED) apparatuses and methods having a high lumen output density. An example apparatus can include a substrate with one or more LEDs enclosed by an encapsulant. The encapsulant comprises beveled edges and/or top surface facets. By providing facets in the encapsulant and minimizing the chip-to-area ratio through efficient via placement, a high lumen density is achieved. Facets and bevels can be created by removing material from the encapsulant with a beveled blade.
Abstract:
Light emitting diode (LED) devices and methods. An example apparatus can include a substrate, one or more LEDs, light-transmissive encapsulation material, and a reflective material covering a portion of the encapsulation material to form a defined opening. The opening allows light emitted from an LED to pass through in a prescribed manner. In some embodiments, the apparatus can be subsequently treated to modify the surface having the opening. In other embodiments, the reflective material can be disposed on a lateral surface of the encapsulation material to reflect light in a desired direction.
Abstract:
Submount based surface mount design (SMD) light emitter components and related methods are disclosed. In some aspects, light emitter components can include a submount with a first side having a first surface area, first and second electrical contacts disposed on the first side of the submount, and at least one light emitter chip on the first side. In some aspects, the electrical contact area can be less than half of the first surface area of the first side of the submount. Components disclosed herein can include low profile parts or domes where a ratio between a dome height and a dome width is less than 0.5. A method of providing components can include providing a panel of material and LED chips, dispensing a liquid encapsulant material over the panel, and singulating the panel into individual submount based components after the encapsulant material has hardened.
Abstract:
Light emitting diode (LED) devices, components and systems are provided. LED devices include a submount with a plurality of LEDs disposed thereon. The LEDs mounted on a submount can be spaced apart at predetermined dimensions to control the gaps between each of the plurality of LEDs. By controlling the gaps between LEDs the optical output from the LED device can be optimized, including improving emission and/or color uniformity, minimizing or eliminating deadspots in the light emission, and/or minimizing or eliminating an optical cross. A phosphor layer can be disposed on the plurality of LEDs and between the LEDs in the gaps therebetween.
Abstract:
Light emitting devices include a red solid state emitter and a blue-shifted-yellow solid state emitter that comprises a blue light emitting diode (“LED”) and an associated luminophoric medium that includes first, second and third luminescent materials that emit light having a dominant wavelength in the respective green, yellow and red color ranges. Each blue-shifted-yellow solid state emitter emits light having a color point on the 1931 CIE Chromaticity Diagram in a region defined by ccx, ccy coordinates of (0.226, 0.295), (0.295, 0.298), (0.323, 0.360), (0.344, 0.358), (0.422, 0.496), (0.391, 0.517), (0.371, 0.477), (0.506, 0.303), (0.226, 0.295). These devices emit light having a color point that is within a 4-step MacAdam ellipse of the black-body locus.
Abstract:
Leadframe based light emitter components and methods are provided. In some aspects, a leadframe based light emitter component includes a leadframe element, an electrical device connected to a portion of the leadframe element, and a molded cup encasing portions of the leadframe element and the electrical device connected thereto. A method of providing a leadframe based light emitter component includes providing a leadframe element, connecting an electrical device to a portion of the leadframe element, and molding a body over portions of the leadframe element and the electrical device.