Abstract:
Systems and methods for controlling operation of dual fuel internal combustion engines in response to cylinder pressure based determinations are disclosed. The techniques control fuelling contributions from a first fuel source and a second fuel source to achieve desired operational outcomes in response to the cylinder pressure based determinations.
Abstract:
Systems and methods for controlling intake flow to dual fuel internal combustion engines are disclosed. The system includes an intake system for providing a charge flow to a plurality of cylinders of the engine through at least two asymmetric intake passages connected to respective intake ports of each cylinder of the engine. At least one or both intake passages includes a throttle to control the intake flow therethrough. The characteristics of the charge flow into the cylinders is controlled by the throttles in response to operating conditions of the dual fuel engine.
Abstract:
Systems, methods and apparatus for controlling operation of dual fuel engines are disclosed that regulate the fuelling amounts provided by a first fuel and a second fuel during operation of the engine. The first fuel can be a liquid fuel and the second fuel can be a gaseous fuel. The fuelling amounts are controlled to improve operational outcomes of the duel fuel engine.
Abstract:
Systems, methods and apparatus for controlling operation of dual fuel engines are disclosed that regulate the fuelling amounts provided by a first fuel and a second fuel during operation of the engine. The first fuel can be a liquid fuel and the second fuel can be a gaseous fuel. The fuelling amounts are controlled to improve operational outcomes of the duel fuel engine.
Abstract:
Systems, methods and apparatus for controlling operation of dual fuel engines are disclosed that regulate the fueling amounts provided by a first fuel and a second fuel during operation of the engine. The first fuel can be a liquid fuel and the second fuel can be a gaseous fuel. The fueling amounts are controlled to improve operational outcomes of the duel fuel engine.
Abstract:
Systems, methods and apparatus for controlling operation of dual fuel engines are disclosed that regulate the fueling amounts provided by a first fuel and a second fuel during operation of the engine. The first fuel can be a liquid fuel and the second fuel can be a gaseous fuel. The fueling amounts are controlled to improve operational outcomes of the duel fuel engine.
Abstract:
A method and system of power generating is provided to reduce a startup time of a genset for providing requested power to a utility grid or a load. The genset includes a generator, a turbocharger, and an energy storage. The generator includes an engine. The genset responds to a genset start signal by accelerating an engine speed of the generator to reach a synchronous speed. The engine speed is accelerated more rapidly by activating the energy storage device to supply power to at least one of the generator and the turbocharger. The generator then supplies power to the utility grid or load.
Abstract:
A method of reducing carbonaceous deposits on a fuel injector is provided in which a first fuel composition is supplied to the fuel injector in a dual fuel engine, the first fuel composition comprising natural gas fuel and a first percentage of diesel fuel; and a second fuel composition is supplied to the fuel injector in a dual fuel engine, the second fuel composition comprising a second percentage of diesel fuel that is greater than the first percentage of diesel fuel to cause cavitation to occur within the fuel injector, thereby reducing carbonaceous deposits.
Abstract:
Systems, methods and apparatus for controlling operation of an engine structured to combust gaseous fuel such as a dual fuel engine, including an estimation of key parameters dependent on natural gas quality, are disclosed. The natural gas quality parameters are estimated from natural gas properties obtained from various sensed parameters associated with the engine.
Abstract:
An apparatus includes an engine load module structured to detect an engine operating state of the engine and generate an engine status report; a timing module structured to receive the engine status report and generate a cylinder request after the engine has been in a certain engine operating state for a certain period of time; and a cylinder module structured to receive the cylinder request and generate a cylinder command to be sent to the engine to deactivate a portion of combustion cylinders based on the engine operating state existing for the certain period of time.