摘要:
Disclosed is a method of verifying a programmed condition of a flash memory device, being comprised of: determining a level of an additional verifying voltage in response to the number of programming/erasing cycles of memory cells; conducting a verifying operation to programmed memory cells with an initial verifying voltage lower than the additional verifying voltage; and selectively conducting an additional verifying operation with the additional verifying voltage to the program-verified memory cells in response to the number of programming/erasing cycles.
摘要:
A nonvolatile memory device includes a semiconductor substrate having a first well region of a first conductivity type, and at least one semiconductor layer formed on the semiconductor substrate. A first cell array is formed on the semiconductor substrate, and a second cell array formed on the semiconductor layer. The semiconductor layer includes a second well region of the first conductivity type having a doping concentration greater than a doping concentration of the first well region of the first conductivity type. As the doping concentration of the second well region is increased, a resistance difference may be reduced between the first and second well regions.
摘要:
A semiconductor device and a method of forming the same are provided. The method includes preparing a semiconductor substrate. Insulating layers may be sequentially formed on the semiconductor substrate. Active elements may be formed between the insulating layers. A common node may be formed in the insulating layers to be electrically connected to the active elements. The common node and the active elements may be 2-dimensionally and repeatedly arranged on the semiconductor substrate.
摘要:
Methods for setting a read voltage in a memory system which comprises a flash memory device and a memory controller for controlling the flash memory device, comprise sequentially varying a distribution read voltage to read page data from the flash memory device; constituting a distribution table having a data bit number and a distribution read voltage, the data bit number indicating an erase state among the page data respectively read from the flash memory device and the distribution read voltage corresponding to the read page data; detecting distribution read voltages corresponding to data bit numbers each indicating maximum points of possible cell states of a memory cell, based on the distribution table; and defining new read voltages based on the detected distribution read voltages.
摘要:
A non-volatile semiconductor memory device comprises first and second sub-memory arrays and a strapping line disposed between the first and second sub-memory arrays. A programming operation of the first sub-memory array is performed by simultaneously applying a programming voltage to odd and even bit lines connected to memory cells within the first sub-memory array.
摘要:
A semiconductor device having an MIM capacitor and a method of forming the same are provided. A lower electrode includes a plate electrode and a sidewall electrode. The plate electrode is formed by a patterning process preferably including a plasma anisotropic etching. The sidewall electrode is formed like a spacer on an inner sidewall of an opening exposing the plate electrode by a plasma entire surface anisotropic etching.
摘要:
A memory cell array block has unit memory cells comprised of pairs of memory cells, each of have a memory cell and a complementary memory cell. A second unit memory cell is interleaved with the first unit memory cell, a fourth unit memory cell is interleaved with a third unit memory cell. First and second sense amplifiers are disposed over and under the array block, respectively. The first switch connects bitlines coupled to the first unit memory cell with the first sense amplifier and connects bitlines coupled to the second unit memory cell with the second sense amplifier. The second switch connects bitlines coupled to the third unit memory cell with the first sense amplifier and connects bitlines coupled to the fourth unit memory cell with the second sense amplifier. A selected unit memory cell is selectively connected with a sense amplifier, decreasing the number of sense amplifiers.
摘要:
Disclosed is a triple metal line 1T/1C ferroelectric memory device and a method to make the same. A ferroelectric capacitor is connected to the transistor through a buried contact plug. An oxidation barrier layer lies between the contact plug and the lower electrode of the capacitor. A diffusion barrier layer covers the ferroelectric capacitor to prevent diffusion of material into or out of capacitor. As a result of forming the oxidation barrier layer, the contact plug is not exposed to the ambient oxygen atmosphere thereby providing a reliable ohmic contact between the contact plug and the lower electrode. Also, the memory device provides a triple interconnection structure made of metal, which improves device operation characteristics.
摘要:
A ferroelectric memory device includes a microelectronic substrate and a plurality of ferroelectric capacitors on the substrate, arranged as a plurality of rows and columns in respective row and column directions. A plurality of parallel plate lines overlie the ferroelectric capacitors and extend along the row direction, wherein a plate line contacts ferroelectric capacitors in at least two adjacent rows. The plurality of plate lines may include a plurality of local plate lines, and the ferroelectric memory device may further include an insulating layer disposed on the local plate lines and a plurality of main plate lines disposed on the insulating layer and contacting the local plate lines through openings in the insulating layer. In some embodiments, ferroelectric capacitors in adjacent rows share a common upper electrode, and respective ones of the local plate lines are disposed on respective ones of the common upper electrodes. Ferroelectric capacitors in adjacent rows may share a common ferroelectric dielectric region. Related fabrication methods are discussed.
摘要:
Integrated circuit ferroelectric memory devices are provided that include an integrated circuit transistor. The memory device further includes a ferroelectric capacitor on the integrated circuit transistor. The ferroelectric capacitor includes a first electrode adjacent the transistor, a second electrode remote from the transistor and a ferroelectric film therebetween. The memory device further includes a plate line directly on the ferroelectric capacitor. Methods are also provided that include forming a ferroelectric capacitor on the integrated circuit transistor and forming a plate line directly on the ferroelectric capacitor.