Abstract:
The present invention provides a method for determining nucleic acid sequences of a template nucleic acid that requires no prior knowledge of the nucleic acid sequence present in the template nucleic acid. The method is based on combining information about the mass of a fragment, the mass of any one nucleotide and the combinations thereof, and the sequence specificity of a nucleotide cutter, either enzymatic or chemical cutter, to determine a sequence of a nucleic acid fragment. This method allows for de novo detection of sequences in a target nucleic acid without requiring any prior sequence information. This method is called Partial Sequencing by Fragmentation (PSBF) and it works by fragmenting a target into oligo- or polynucleotides whose masses or lengths are uniquely associated with known sequences. The identities of these sequences are determined solely by the specific fragmentation method used, and are always independent of the target. PSBF can be implemented using electrophoresis, mass spectrometry or any other method that can be used to distinguish the size of the cut nucleic acid sequence fragments.
Abstract:
The present invention provides a method for determining nucleic acid sequences of a template nucleic acid that requires no prior knowledge of the nucleic acid sequence present in the template nucleic acid. The method is based on combining information about the mass of a fragment, the mass of any one nucleotide and the combinations thereof, and the sequence specificity of a nucleotide cutter, either enzymatic or chemical cutter, to determine a sequence of a nucleic acid fragment. This method allows for de novo detection of sequences in a target nucleic acid without requiring any prior sequence information. This method is called Partial Sequencing by Fragmentation (PSBF) and it works by fragmenting a target into oligo- or polynucleotides whose masses or lengths are uniquely associated with known sequences. The identities of these sequences are determined solely by the specific fragmentation method used, and are always independent of the target. PSBF can be implemented using electrophoresis, mass spectrometry or any other method that can be used to distinguish the size of the cut nucleic acid sequence fragments.
Abstract:
This invention is directed to methods and reagents useful for sequencing nucleic acid targets utilizing sequencing by hybridization technology comprising probes, arrays of probes and methods whereby sequence information is obtained rapidly and efficiently in discrete packages. That information can be used for the detection, identification, purification and complete or partial sequencing of a particular target nucleic acid. When coupled with a ligation step, these methods can be performed under a single set of hybridization conditions. The invention also relates to the replication of probe arrays and methods for making and replicating arrays of probes which are useful for the large scale manufacture of diagnostic aids used to screen biological samples for specific target sequences. Arrays created using PCR technology may comprise probes with 5′- and/or 3′-overhangs.
Abstract:
The invention provides methods for dispensing tools that can be employed to generate multi-element arrays of sample material on a substrate surface. The substrates surfaces can be flat or geometrically altered to include wells of receiving material. The tool can dispense a spot of fluid to a substrate surface by spraying the fluid from the pin, contacting the substrate surface or forming a drop that touches against the substrate surface. The tool can form an array of sample material by dispensing sample material in a series of steps, while moving the pin to different locations above the substrate surface to form the sample array. The invention then passes the prepared sample arrays to a plate assembly that disposes the sample arrays for analysis by mass spectrometry. To this end, a mass spectrometer is provided that generates a set of spectra signal which can be understood as indicative of the composition of the sample material under analysis.
Abstract:
Methods for detecting and sequencing of target double-stranded nucleic acid molecules, nucleic acid probes and arrays of probes useful in these methods, and kits and systems that contain these probes are provided. The methods involve hybridizing the nucleic acids or nucleic acids which represent complementary or homologous sequences of the target to an array of nucleic acid probes. These probes include a single-stranded portion, an optional double-stranded portion and a variable sequence within the single-stranded portion. The molecular weights of the hybridized nucleic acids of the set can be determined by mass spectroscopy, and the sequence of the target determined from the molecular weights of the fragments.
Abstract:
Methods and kits that use nucleotide analogs to confer increased accuracy and improved resolution in the analysis and sequencing of oligonucleotide mixtures are provided.
Abstract:
This invention relates to methods for detecting and sequencing of target double-stranded nucleic acid sequences, to nucleic acid probes and arrays of probes useful in these methods, and to kits and systems which contain these probes. Useful methods involve hybridizing the nucleic acids or nucleic acids which represent complementary or homologous sequences of the target to an array of nucleic acid probes. These probe comprise a single-stranded portion, an optional double-stranded portion and a variable sequence within the single-stranded portion. The molecular weights of the hybridized nucleic acids of the set can be determined by mass spectroscopy, and the sequence of the target determined from the molecular weights of the fragments. Nucleic acids whose sequences can be determined include nucleic acids in biological samples such as patient biopsies and environmental samples. Probes may be fixed to a solid support such as a hybridization chip to facilitate automated determination of molecular weights and identification of the target sequence.
Abstract:
Compositions and methods for the control of genetically engineered organisms are described. A more effective cell suicide approach is contemplated based on the conditional expression of the lethal Streptomyces avidinii streptavidin gene. Toxicity of streptavidin is derived from its exceptionally high binding affinity for an essential prosthetic group, D-biotin. The general requirement for biotin through the living world makes streptavidin-based conditional lethal designs applicable to a broad range of containment strategies.
Abstract:
The invention relates to bis-protein-DNA conjugates. A protein having a specific ligand binding activity is covalently linked to each end of a derivatized DNA molecule. These bis-protein-DNA conjugates can be used for immunoassays, PCR assays and measuring distances between proteins at up to 3.4 A resolution. The invention also relates to methods of synthesizing these bis-protein-DNA conjugates. Synthesis of the conjugates entails derivatizing the 5' or 3' end of a DNA oligonucleotide and covalently linking that DNA to a protein. The DNA can be conjugated to the proteins, including antibodies or Fab' fragments, using disulfide bond linkage.
Abstract:
The invention relates to the replication of probe arrays and methods for replicating arrays of probes which are useful for the large scale manufacture of diagnostic aids used to screen biological samples for specific target sequences. Arrays created using PCR technology may comprise probes with 5'- and/or 3'-overhangs.