摘要:
A memory device is provided. The memory device includes a substrate, a trench having an upper portion and a lower portion formed in the substrate, a trench capacitor formed in the lower portion of the trench, a collar dielectric layer formed on a sidewall of the trench capacitor and extending away from a top surface of the substrate, a first doping region formed on a side of the upper portion of the trench in the substrate for serving as source/drain, a conductive layer formed in the trench and electrically connected to the first doping region, a top dielectric layer formed on conductive layer, a gate formed on the top dielectric layer, an epitaxy layer formed on both sides of the gate and on the substrate and a second doping area formed on a top of the epitaxy layer for serving as source/drain.
摘要:
A method of fabricating self-aligned recess utilizing asymmetric poly spacer is disclosed. A semiconductor substrate having thereon a first pad layer and second pad layer is provided. A plurality of trenches is embedded in a memory array region of the semiconductor substrate. Each of the trenches includes a trench top layer that extrudes from a main surface of the semiconductor substrate. Asymmetric poly spacer is formed on one side of the extruding trench top layer and is used, after oxidized, as a mask for forming a recess in close proximity to the trenches.
摘要:
A novel metal gate structure includes a gate oxide layer formed on a surface of a silicon substrate, a doped silicon layer stacked on the gate oxide layer, a CVD ultra-thin titanium nitride film deposited on the doped silicon layer, a tungsten nitride layer stacked on the CVD ultra-thin titanium nitride film, a tungsten layer stacked on the tungsten nitride layer, and a nitride cap layer stacked on the tungsten layer. A liquid phase deposition (LPD) oxide spacer is formed on each sidewall of the metal gate stack. A silicon nitride spacer is formed on the LPD oxide spacer. The thickness of the CVD ultra-thin titanium nitride film is between 10 and 100 angstroms.
摘要:
Method for forming bottle trenches by liquid phase oxide deposition. The method includes the steps of providing a substrate having a pad layer formed thereon, and a trench formed in a predetermined position; forming a masking layer at the bottom part of the trench; using liquid phase deposition (LPD) to form an LPD oxide layer on the sidewalls of the trench; removing the masking layer to expose the bottom part of the trench; subjecting the LPD oxide layer to annealing; and etching the bottom part of the trench not covered by the LPD oxide layer to form a bottle trench.
摘要:
A method of fabricating a semiconductor device having a trench gate is provided. First, a semiconductor substrate having a trench etch mask thereon is provided. The semiconductor substrate is etched to form a trench having a sidewall and a bottom using the trench etch mask as a shield. Impurities are doped into the semiconductor substrate through the trench to form a doped region. The semiconductor substrate underlying the trench is etched to form an extended portion. A gate insulating layer is formed on the trench and the extended portion. A trench gate is formed in the trench and the extended portion.
摘要:
A method of forming a vertical memory device with a rectangular trench. First, a substrate covered by a photoresist layer is provided. Next, the photoresist layer is defined by a mask to form a rectangular opening, wherein the mask has two rectangular transparent patterns arranged with a predetermined interval. Next, the substrate is etched using the defined photoresist layer as a mask to form a single rectangular trench and the photoresist layer is then removed. Finally, a trench capacitor and a vertical transistor are successively formed in the rectangular trench to finish the vertical memory device.
摘要:
A method of forming a silicon nitride layer. The method comprises providing a substrate having a silicon surface thereon, performing an ion implant process on the silicon surface, implanting nitrogen atoms into the silicon surface, and performing a thermal nitridation process and forming a silicon nitride layer on the substrate, wherein the silicon nitride layer comprises the silicon nitride formed on the silicon surface by reaction of the silicon surface with the nitrogen atoms contained therein.
摘要:
A method for forming a bottle trench. First, a substrate covered by a photoresist layer is rotated to a specific angle prior to performance of lithography, thereby forming a rectangular opening in the photoresist layer and exposing the substrate, in which edges of the rectangular opening are substantially parallel to the {110} plane of the substrate due to the rotation of the substrate. Next, the exposed substrate is etched to form a trench therein, in which the sidewall surface of the trench is the {110} plane of the substrate. Finally, isotropic etching is performed on the substrate of the lower portion of the trench using an etching shield layer formed on the sidewall of the upper portion of the trench as an etching mask, to form the bottle trench. The invention also discloses a method of fabricating a bottle trench capacitor.
摘要:
A novel metal gate structure includes a gate oxide layer formed on a surface of a silicon substrate, a doped silicon layer stacked on the gate oxide layer, a CVD ultra-thin titanium nitride film deposited on the doped silicon layer, a tungsten nitride layer stacked on the CVD ultra-thin titanium nitride film, a tungsten layer stacked on the tungsten nitride layer, and a nitride cap layer stacked on the tungsten layer. A liquid phase deposition (LPD) oxide spacer is formed on each sidewall of the metal gate stack. A silicon nitride spacer is formed on the LPD oxide spacer. The thickness of the CVD ultra-thin titanium nitride film is between 10 and 100 angstroms.
摘要:
A memory structure having a floating body is provided, which includes a substrate including an active area and an isolation structure surrounding the active area, a first source/drain region in the substrate in the active area, a first floating body in the substrate above the first source/drain region, a second floating body on the first floating body, a second source/drain region on the second floating body, and a trench-type gate structure in the substrate and beside the first floating body. A method of fabricating a memory structure having a floating body is also provided.