Abstract:
A process for fabricating CMOS devices, featuring a channel region comprised with a strained SiGe layer, has been developed. The process features the selective growth of a composite silicon layer on the top surface of N well and P well regions. The composite silicon layer is comprised of a thin, strained SiGe layer sandwiched between selectively grown, undoped silicon layers. The content of Ge in the SiGe layer, between about 20 to 40 weight percent, allows enhanced carrier mobility to exist without creation of silicon defects. A thin silicon dioxide gate insulator is thermally grown from a top portion of the selectively grown silicon layer, located overlying the selectively grown SiGe layer.
Abstract:
A method for fabricating a high-density array of crown capacitors with increased capacitance while reducing process damage to the bottom electrodes is achieved. The process is particularly useful for crown capacitors for future DRAM circuits with minimum feature sizes of 0.18 micrometer or less. A conformal conducting layer is deposited over trenches in an interlevel dielectric (ILD) layer, and is polished back to form capacitor bottom electrodes. A novel photoresist mask and etching are then used to pattern the ILD layer to provide a protective interlevel dielectric structure between capacitors. The protective structures prevent damage to the bottom electrodes during subsequent processing. The etching also exposes portions of the outer surface of bottom electrodes for increased capacitance (>50%). In a first embodiment the ILD structure is formed between pairs of adjacent bottom electrodes, and in a second embodiment the ILD structure is formed between four adjacent bottom electrodes.
Abstract:
A method comprises providing a semiconductor alloy layer on a semiconductor substrate, forming a gate structure on the semiconductor alloy layer, forming source and drain regions in the semiconductor substrate on both sides of the gate structure, removing at least a portion of the semiconductor alloy layer overlying the source and drain regions, and forming a metal silicide region over the source and drain regions.
Abstract:
A method is described for forming three or more spacer widths in transistor regions on a substrate. In one embodiment, different silicon nitride thicknesses are formed above gate electrodes followed by nitride etching to form spacers. Optionally, different gate electrode thicknesses may be fabricated and a conformal oxide layer is deposited which is subsequently etched to form different oxide spacer widths. A third embodiment involves a combination of different gate electrode thickness and different nitride thicknesses. A fourth embodiment involves selectively thinning an oxide layer over certain gate electrodes before etching to form spacers. Therefore, spacer widths can be independently optimized for different transistor regions on a substrate to enable better drive current in transistors with narrow spacers and improved SCE control in neighboring transistors with wider spacers. Better drive current is also obtained in transistors with shorter polysilicon thickness.
Abstract:
A semiconductor chip includes a semiconductor substrate 126, in which first and second active regions are disposed. A resistor 124 is formed in the first active region and the resistor 124 includes a doped region 128 formed between two terminals 136. A strained channel transistor 132 is formed in the second active region. The transistor includes a first and second stressor 141, formed in the substrate oppositely adjacent a strained channel region 143.
Abstract:
The present disclosure provides a method of fabricating a semiconductor device. The method includes forming a patterned dielectric layer having a plurality of first openings. The method includes forming a conductive liner layer over the patterned dielectric layer, the conductive liner layer partially filling the first openings. The method includes forming a trench mask layer over portions of the conductive liner layer outside the first openings, thereby forming a plurality of second openings, a subset of which are formed over the first openings. The method includes depositing a conductive material in the first openings to form a plurality of vias and in the second openings to form a plurality of metal lines. The method includes removing the trench mask layer.
Abstract:
Disclosed herein is a magnetoresistive structure having a non-planar form. Embodiments of the present MR structure includes those having at least one inflection between a first portion of the MR structure that is somewhat vertical relative to a substrate and a second portion of the MR structure that is somewhat horizontal relative to the substrate. Such a structure can be used for memory device, for example an MRAM memory device, wherein the memory density is increased compared to devices having prior planar MR structures without reducing the surface area of the MR structures.
Abstract:
A web camera includes an image sensor, which takes an external image; a sensor interface, which is connected to the mage sensor to receive and convert the image taken by the image sensor into digital image data; at least one compression module, which is connected to the sensor interface to receive and compress the digital image data into compressed image data; and a USB interface, which is connected to the compression module to output the compressed image data to a host device having a USB interface port, such as a computer and a USB OTG device, for storage, playing back and other applications.
Abstract:
A method of forming an epitaxial layer of uniform thickness is provided to improve surface flatness. A substrate is first provided and a Si base layer is then formed on the substrate by epitaxy. A Si—Ge layer containing 5 to 10% germanium is formed on the Si base layer by epitaxy to normalize the overall thickness of the Si base layer and the Si—Ge layer containing 5 to 10% germanium.
Abstract:
A system for buffering articles in transport is provided. The system comprises a buffer module configured to buffer articles and a computing system. The buffer module includes a first conveyor configured to transport the articles and a transference node configured to transfer the articles between the first conveyor and an external location. The computing system is configured to maintain an inventory list including a present location of each of the articles buffered by the buffer module. The computing system is further configured to control operation of the buffer module to transfer a selected article among the buffered articles to the external location.