Electronic fuse structure and method of manufacturing
    11.
    发明授权
    Electronic fuse structure and method of manufacturing 有权
    电子熔断器结构及制造方法

    公开(公告)号:US06633055B2

    公开(公告)日:2003-10-14

    申请号:US09303509

    申请日:1999-04-30

    IPC分类号: H01L2974

    摘要: A gap conductor structure for an integrated electronic circuit that may function as an electronic fuse device or as a low capacitance inter level signal line is integrated as part of the semi-conductor chip wiring. The gap conducting structure includes one or more air gap regions of predefined volume that fully or partially exposes a length of interlevel conductor layer in an IC. Alternately, the air gap region may wholly located within the dielectric region below a corresponding conductor and separated by insulator. When functioning as a fuse, the gap region acts to reduce thermal conductivity away from the exposed portion of the conductor enabling generation of higher heat currents in the conducting line with lower applied voltages sufficient to melt a part of the conducting line. The presence of gaps, and hence, the fuses, are scalable and may be tailored to the capacity of currents they must carry with the characteristics of the fuses defined by a circuit designer. Furthermore, conducting structures completely or partially exposed in the air gap may function as low capacitance minimum delay transmission lines.

    摘要翻译: 作为半导体芯片布线的一部分,集成电子电路的可用作电子熔断器件或低电容级间信号线的间隙导体结构被集成。 间隙导电结构包括一个或多个预定体积的气隙区域,其完全或部分地暴露IC中的层间导体层的长度。 或者,气隙区域可以完全位于相应导体下方的电介质区域内并被绝缘体分隔开。 当用作熔丝时,间隙区域用于降低远离导体的暴露部分的热导率,使得能够以较低的施加电压在导线中产生更高的热流,从而熔化导电线的一部分。 间隙的存在以及保险丝的存在是可扩展的,并且可以根据电路设计者定义的保险丝的特性来适应其必须携带的电流的容量。 此外,在气隙中完全或部分暴露的导电结构可用作低电容最小延迟传输线

    Silicon anti-fuse structures, bulk and silicon on insulator fabrication methods and application
    12.
    发明授权
    Silicon anti-fuse structures, bulk and silicon on insulator fabrication methods and application 失效
    硅抗熔丝结构,绝缘体上的体和硅绝缘体制造方法和应用

    公开(公告)号:US06396120B1

    公开(公告)日:2002-05-28

    申请号:US09527191

    申请日:2000-03-17

    IPC分类号: H01L2972

    摘要: A method and semiconductor structure that uses a field enhanced region where the oxide thickness is substantially reduced, thereby allowing antifuse programming at burn-in voltages which do not damage the standard CMOS logic. The semiconductor device comprises a substrate that has a raised protrusion terminating at a substantially sharp point, an insulator layer over the raised protrusion sufficiently thin to be breached by a breakdown voltage applied to the sharp point, a region comprised of a material on the insulator over the raised protrusion for becoming electrically coupled to the substrate after the insulator layer is breached by the breakdown voltage, and a contact for supplying the breakdown voltage to the substrate. In a second embodiment, the semiconductor device comprises a substrate having a trough formed in a top surface of the substrate, a relatively thick insulator layer over the top surface of the substrate, a relatively thin insulator layer over the trough that is breached by a breakdown voltage applied to the trough, a region comprised of a material on the relatively thin insulator layer over the trough for becoming electrically coupled to the substrate after the relatively thin insulator layer is breached by the breakdown voltage, and a contact for supplying the breakdown voltage to said substrate.

    摘要翻译: 一种使用场强增强区域的方法和半导体结构,其中氧化物厚度大大降低,从而允许在不损坏标准CMOS逻辑的老化电压下进行反熔丝编程。 半导体器件包括具有突出的突起终止于基本尖锐点的衬底,凸起突起上的绝缘体层足够薄以致被施加到尖锐点的击穿电压所破坏,由绝缘体上的材料构成的区域 在绝缘体层被击穿电压破坏之后用于电耦合到衬底的凸起突起,以及用于向衬底提供击穿电压的触点。 在第二实施例中,半导体器件包括在衬底的顶表面中形成有槽的衬底,在衬底的顶表面上方的相对较厚的绝缘体层,在槽的相对较薄的绝缘体层,其被破坏 电压施加到槽,由比较薄的绝缘体层上的材料组成的区域,该沟槽在相对较薄的绝缘体层被击穿电压破坏之后用于变成与电极耦合的衬底;以及用于将击穿电压提供给 所述基板。

    Structures for wafer level test and burn-in
    13.
    发明授权
    Structures for wafer level test and burn-in 失效
    晶圆级测试和老化的结构

    公开(公告)号:US06426904B2

    公开(公告)日:2002-07-30

    申请号:US09803500

    申请日:2001-03-09

    IPC分类号: G11C2900

    摘要: Wafer test and burn-in is accomplished with state machine or programmable test engines located on the wafer being tested. Each test engine requires less than 10 connections and each test engine can be connected to a plurality of chips, such as a row or a column of chips on the wafer. Thus, the number of pads of the wafer that must be connected for test is substantially reduced while a large degree of parallel testing is still provided. The test engines also permit on-wafer allocation of redundancy in parallel so that failing chips can be repaired after burn-in is complete. In addition, the programmable test engines can have their code altered so test programs can be modified to account for new information after the wafer has been fabricated. The test engines are used during burn-in to provide high frequency write signals to DRAM arrays that provide a higher effective voltage to the arrays, lowering the time required for burn-in. Connections to the wafer and between test engines and chips are provided along a membrane attached to the wafer. Membrane connectors can be formed or opened after the membrane is connected to the wafer so shorted chips can be disconnected. Preferably the membrane remains on the wafer after test, burn-in and dicing to provide a chip scale package. Thus, the very high cost of TCE matched materials, such as glass ceramic contactors, for wafer burn-in is avoided while providing benefit beyond test and burn-in for packaging.

    摘要翻译: 晶圆测试和老化是通过位于被测晶片上的状态机或可编程测试引擎完成的。 每个测试引擎需要少于10个连接,并且每个测试引擎可以连接到多个芯片,例如晶片上的行或一列芯片。 因此,仍然提供必须连接用于测试的晶片的焊盘数量,同时还提供大量的并行测试。 测试引擎还允许并行的片上分配冗余,以便在老化完成后可以修复故障的芯片。 此外,可编程测试引擎可以对其代码进行更改,因此可以修改测试程序以在晶圆制造之后考虑新的信息。 在老化期间使用测试引擎向DRAM阵列提供高频写入信号,为阵列提供更高的有效电压,从而降低了老化所需的时间。 沿着连接到晶片的膜提供与晶片和测试引擎与芯片之间的连接。 膜连接器可以在膜连接到晶片之后形成或打开,因此短路芯片可以断开。 优选地,膜在测试之后保留在晶片上,老化和切割以提供芯片级封装。 因此,避免了TCE匹配材料(例如玻璃陶瓷接触器)用于晶片老化的非常高的成本,同时提供超出测试和包装封装的优点。

    Single-ended semiconductor receiver with built in threshold voltage difference
    15.
    发明授权
    Single-ended semiconductor receiver with built in threshold voltage difference 失效
    单端半导体接收器内置阈值电压差

    公开(公告)号:US06222395B1

    公开(公告)日:2001-04-24

    申请号:US09225112

    申请日:1999-01-04

    IPC分类号: G05F110

    CPC分类号: G05F3/205

    摘要: A differential receiver for sensing small input voltage swings by using a built in reference voltage obtained by a difference in threshold voltage between a differential pair of closely spaced transistors. The difference in threshold voltage can be produced by different values of ion implantation of the gates of the transistor pair with the same material, or by dosages using different materials. The difference in threshold voltage can also be obtained by using different transistor channel lengths. The threshold voltages can also be modulated by the control of the transistor substrate voltages using a voltage control substrate means.

    摘要翻译: 一种差分接收器,用于通过使用通过差分对间隔晶体管之间的阈值电压差而获得的内置参考电压来感测小输入电压摆幅。 阈值电压的差异可以通过使用相同材料的晶体管对的栅极的离子注入的不同值,或通过使用不同材料的剂量来产生。 也可以通过使用不同的晶体管沟道长度来获得阈值电压的差异。 也可以通过使用电压控制衬底装置控制晶体管衬底电压来调制阈值电压。

    Very low power logic circuit family with enhanced noise immunity
    16.
    发明授权
    Very low power logic circuit family with enhanced noise immunity 有权
    超低功耗逻辑电路系列,具有增强的抗噪声能力

    公开(公告)号:US6111425A

    公开(公告)日:2000-08-29

    申请号:US173436

    申请日:1998-10-15

    CPC分类号: H03K3/356113 H03K19/1738

    摘要: A very low power logic circuit family which advantageously provides 1) retained high performance, 2) significantly reduced power dissipation, and 3) enhanced noise immunity. In a first set of embodiments, dual rail complementary logic signals are utilized to improve circuit immunity to external noise and to reduce noise generated by the logic circuit itself. A receiver portion of the present invention comprises two input FETs having cross coupling of the two gates to the two sources. In one preferred embodiment, both receiver and driver portions are connected in a repeater with all N channel drivers. A second set of embodiments have a single sided input in an unbalanced receiver comprising cross coupled source to gate N channel and cross coupled drain to gate P channel output transistors.

    摘要翻译: 一个非常低功率的逻辑电路系列,有利地提供1)保持高性能,2)显着降低的功耗,和3)增强的抗噪声能力。 在第一组实施例中,使用双轨互补逻辑信号来提高对外部噪声的电路抗扰性并且减少由逻辑电路本身产生的噪声。 本发明的接收机部分包括具有两个门到两个源的交叉耦合的两个输入FET。 在一个优选实施例中,接收器和驱动器部分都连接在具有所有N个通道驱动器的中继器中。 第二组实施例在不平衡接收机中具有单侧输入,包括到栅极N沟道的交叉耦合源极和栅极P沟道输出晶体管的交叉耦合漏极。

    Method of forming connection and anti-fuse in layered substrate such as SOI
    17.
    发明授权
    Method of forming connection and anti-fuse in layered substrate such as SOI 有权
    在诸如SOI的层状衬底中形成连接和反熔丝的方法

    公开(公告)号:US07226816B2

    公开(公告)日:2007-06-05

    申请号:US11055106

    申请日:2005-02-11

    IPC分类号: H01L21/82

    摘要: An anti-fuse structure that can be programmed at low voltage and current and which potentially consumes very little chip spaces and can be formed interstitially between elements spaced by a minimum lithographic feature size is formed on a composite substrate such as a silicon-on-insulator wafer by etching a contact through an insulator to a support semiconductor layer, preferably in combination with formation of a capacitor-like structure reaching to or into the support layer. The anti-fuse may be programmed either by the selected location of conductor formation and/or damaging a dielectric of the capacitor-like structure. An insulating collar is used to surround a portion of either the conductor or the capacitor-like structure to confine damage to the desired location. Heating effects voltage and noise due to programming currents are effectively isolated to the bulk silicon layer, permitting programming during normal operation of the device. Thus the potential for self-repair without interruption of operation is realized.

    摘要翻译: 可以在低电压和电流下被编程并且潜在地消耗很少的芯片空间并且可以间隙地在间隔最小光刻特征尺寸的元件之间形成的抗熔丝结构形成在复合衬底上,例如绝缘体上硅 通过蚀刻通过绝缘体的接触到支撑半导体层,优选结合形成到达或支撑层的电容器状结构。 反熔丝可以由导体形成的选定位置和/或损坏电容器状结构的电介质来编程。 绝缘环用于围绕导体或电容器状结构的一部分,以将损伤限制在所需位置。 由于编程电流导致的加热效应电压和噪声被有效地隔离到体硅层,从而允许在器件正常工作期间进行编程。 因此实现了自动修复而不中断操作的可能性。

    Method for forming mixed high voltage (HV/LV) transistors for CMOS devices using controlled gate depletion
    18.
    发明授权
    Method for forming mixed high voltage (HV/LV) transistors for CMOS devices using controlled gate depletion 失效
    用于使用受控栅极耗尽的CMOS器件形成混合高压(HV / LV)晶体管的方法

    公开(公告)号:US06436749B1

    公开(公告)日:2002-08-20

    申请号:US09658655

    申请日:2000-09-08

    IPC分类号: H01L218238

    CPC分类号: H01L27/092 H01L21/823842

    摘要: A method for forming mixed high voltage/low voltage (HV/LV) transistors for CMOS devices is disclosed. In an exemplary embodiment, depletion of the gate conductor is controlled by leaving a fixed region of the gate conductor intrinsic, or lightly doped, thus separating the heavily doped low resistivity portion of the electrode with an intrinsic region by use of a conducting dopant barrier. The barrier is conductive in nature, but acts as a well-controlled diffusion barrier, stopping the “fast” diffusion which normally takes place in polysilicon, and eliminating diffusion between the conductors. Thereby, the device performance may be precisely predicted by carefully controlling the gate conductor thickness.

    摘要翻译: 公开了一种用于形成用于CMOS器件的混合高压/低压(HV / LV)晶体管的方法。 在示例性实施例中,通过将栅极导体的固定区域固有或轻掺杂来控制栅极导体的耗尽,从而通过使用导电掺杂剂屏障将本征区域的重掺杂低电阻率部分与本征区域分离。 阻挡层本质上是导电的,但是作为良好控制的扩散屏障,停止通常在多晶硅中发生的“快速”扩散,并消除导体之间的扩散。 因此,可以通过仔细地控制栅极导体厚度来精确地预测器件性能。

    Structures and methods of anti-fuse formation in SOI
    20.
    发明授权
    Structures and methods of anti-fuse formation in SOI 失效
    SOI中抗熔丝形成的结构和方法

    公开(公告)号:US06972220B2

    公开(公告)日:2005-12-06

    申请号:US10366298

    申请日:2003-02-12

    摘要: An anti-fuse structure that can be programmed at low voltage and current and which potentially consumes very little chip spaces and can be formed interstitially between elements spaced by a minimum lithographic feature size is formed on a composite substrate such as a silicon-on-insulator wafer by etching a contact through an insulator to a support semiconductor layer, preferably in combination with formation of a capacitor-like structure reaching to or into the support layer. The anti-fuse may be programmed either by the selected location of conductor formation and/or damaging a dielectric of the capacitor-like structure. An insulating collar is used to surround a portion of either the conductor or the capacitor-like structure to confine damage to the desired location. Heating effects voltage and noise due to programming currents are effectively isolated to the bulk silicon layer, permitting programming during normal operation of the device. Thus the potential for self-repair without interruption of operation is realized.

    摘要翻译: 可以在低电压和电流下被编程并且潜在地消耗很少的芯片空间并且可以间隙地在间隔最小光刻特征尺寸的元件之间形成的反熔丝结构形成在复合衬底上,例如绝缘体上硅 通过蚀刻通过绝缘体的接触到支撑半导体层,优选结合形成到达或支撑层的电容器状结构。 反熔丝可以由导体形成的选定位置和/或损坏电容器状结构的电介质来编程。 绝缘环用于围绕导体或电容器状结构的一部分,以将损伤限制在所需位置。 由于编程电流导致的加热效应电压和噪声被有效地隔离到体硅层,从而允许在器件正常工作期间进行编程。 因此实现了自动修复而不中断操作的可能性。