Abstract:
A controller of a thermal management system for a vehicle controls a first switching valve and a second switching valve to set a battery warming-up state in which a heat medium circulates between a battery-temperature adjustment heat exchanger and a heat-medium heating heat exchanger, and the heat medium does not circulate between a coolant-coolant heat exchanger and a heat-medium heating heat exchanger when both a battery and an engine need to be warmed up. In contrast, the controller controls the first switching valve and the second switching valve to set an engine warming-up state in which the heat medium circulates through between the coolant-coolant heat exchanger and the heat-medium heating heat exchanger while the heat medium does not circulate between a battery-temperature adjustment heat exchanger and the heat-medium heating heat exchanger when a temperature of the battery exceeds a target battery warming-up temperature in the battery warming-up state.
Abstract:
In a refrigeration cycle device, a first evaporator for cooling a first cooling target and a second evaporator for cooling a second cooling target are arranged in parallel between a radiator and an accumulator, a first pressure reducer is arranged upstream of the first evaporator, and a mechanical expansion valve as a second pressure reducer is arranged upstream of the second evaporator. The refrigeration cycle device includes a refrigerant passage through which a portion of a refrigerant flowing out of the radiator flows while bypassing the second pressure reducer and the second evaporator, and is decompressed by a separate pressure reducer from the second pressure reducer, so as to return the refrigerant containing a liquid phase refrigerant to the accumulator, in a cooling operation mode for cooling only the second cooling target.
Abstract:
First circulation portions switch a flow of a heat medium such that one of the heat media for two systems selectively circulates through a radiator flow path or a first bypass flow path. Second circulation portions switch the flow of the heat medium such that the heat media for the two systems selectively circulate with respect to a second flow path group. The first circulation portions and the second circulation portions are adapted to switch the flow of the heat medium so as to form a first circulation circuit for allowing the heat medium to circulate among a first flow path group, the second flow path group, and a first pump, as well as a second circulation circuit for allowing the heat medium to circulate among the first flow path group, the second flow path group, and a second pump.
Abstract:
A heat pump cycle includes a refrigerant circuit and a coolant circuit. A first heat exchanger and a second heat exchanger are disposed between the refrigerant circuit and the coolant circuit. The first heat exchanger includes an exterior heat exchanger that functions as an evaporator in a heating operation, and a radiator for radiating heat of a coolant. The second heat exchanger transmits a heat of high-pressure refrigerant to the coolant in the heating operation. A temperature of refrigerant within the second heat exchanger is higher than a temperature of refrigerant within the first heat exchanger. The heat obtained from the second heat exchanger is supplied to the first heat exchanger through the coolant. Further, the heat obtained from the second heat exchanger is stored in the coolant. In defrosting operation, the coolant that has stored the heat therein is supplied to the first heat exchanger.
Abstract:
An air conditioner includes: a heat-medium air heat exchanger that exchanges sensible heat between a heat medium having a temperature adjusted by the heat-medium temperature adjuster and ventilation air blowing to a space to be air-conditioned; a heat transfer portion having a flow path through which the heat medium circulates to transfer heat with the heat medium having the temperature adjusted by the heat-medium temperature adjuster; a large-inner-diameter pipe that forms a heat-medium flow path between the heat-medium temperature adjuster and the heat transfer portion; and a small-inner-diameter pipe that forms a heat-medium flow path between the heat-medium temperature adjuster and the heat-medium air heat exchanger. The small-inner-diameter pipe has small inner diameters ϕH and ϕC, compared to the large-inner-diameter pipe.
Abstract:
First circulation portions switch a flow of a heat transfer medium such that one of the heat transfer media for two systems selectively circulates through a radiator flow path or a first bypass flow path. Second circulation portions switch the flow of the heat transfer medium such that the heat transfer media for the two systems selectively circulate with respect to a second flow path group. The first circulation portions and the second circulation portions are adapted to switch the flow of the heat transfer medium so as to form a first circulation circuit for allowing the heat transfer medium to circulate among a first flow path group, the second flow path group, and a first pump, as well as a second circulation circuit for allowing the heat transfer medium to circulate among the first flow path group, the second flow path group, and a second pump.
Abstract:
In an operation mode for heating battery air, a refrigerant passage switching portion switches over to a first refrigerant passage in which a refrigerant including gas refrigerant flowing out of an interior condenser flows into an auxiliary heat exchanger through a first pipe having a relatively large passage cross-sectional area and a liquid refrigerant flowing out of the auxiliary heat exchanger flows to an inlet of an exterior heat exchanger through a second pipe having a relatively small passage cross-sectional area. Meanwhile, in an operation mode for cooling the battery air, the refrigerant passage switching portion switches over to a second refrigerant passage in which a liquid refrigerant flowing out of the exterior heat exchanger flows into the auxiliary heat exchanger through the second pipe and a gas refrigerant flowing out of the auxiliary heat exchanger flows to a suction port of a compressor through the first pipe.
Abstract:
A heat medium discharge side of a first pump and a heat medium discharge side of a second pump are connected to a first switching valve in parallel with each other. Respective heat medium inlet sides of a plurality of temperature adjustment devices are connected to the first switching valve in parallel with each other. Respective heat medium outlet sides of the temperature adjustment devices are connected to a second switching valve in parallel with each other. A heat medium suction side of the first pump and a heat medium suction side of the second pump are connected to the second switching valve in parallel with each other. Each of the temperature adjustment devices is switched between a state in which the heat medium circulates between the device and the first pump, and another state in which the heat medium circulates between the device and the second pump.
Abstract:
A device temperature regulator is provided with a gas passage part that guides a gaseous working fluid evaporated in a device heat exchanger to a condenser, and a liquid passage part that guides a liquid working fluid condensed in the condenser to the device heat exchanger. The device temperature regulator is provided with a supply amount regulator that increases or decreases a supply amount of the liquid working fluid supplied to the device heat exchanger. The supply amount regulator decreases the supply amount of the liquid working fluid to the device heat exchanger such that a liquid surface is formed in a state where the gaseous working fluid is positioned at a lower side lower than a heat exchanging portion exchanging heat with a temperature regulation target device in the device heat exchanger, when a condition for keeping the temperature regulation target device at a temperature is satisfied.
Abstract:
A vehicle thermal management system includes a switching portion that switches between a state in which a heat medium circulates through a heat-medium cooling heat exchanger and a state in which the heat medium circulates through a heat-medium heating heat exchanger with respect to each of an engine heat-transfer portion and a heat-generating device, a flow-rate adjustment portion that adjusts the flow rate of the heat medium for each of a heat-medium outside-air heat exchanger and the engine heat-transfer portion, an air-conditioning requesting portion that makes a cooling request for an air cooling heat exchanger to cool the ventilation air as well as a heating request for an air heating heat exchanger to heat the ventilation air, and a controller that controls an operation of at least one of the switching portion, a compressor, and the flow-rate adjustment portion based on presence/absence of the cooling request and presence/absence of the heating request from the air-conditioning requesting portion.