Abstract:
Methods are provided for fabricating integrated circuits. In accordance with one embodiment, the method includes forming a portion of a semiconductor substrate at least partially bounded by a confinement isolation material. A liner dielectric is formed overlying the confinement isolation material and is treated to passivate a surface thereof. An epitaxial layer of semiconductor material is then grown overlying the portion of semiconductor substrate.
Abstract:
Structures for interconnects and methods of forming interconnects. An interconnect opening in a dielectric layer includes a first portion and a second portion arranged over the first portion. A first conductor layer composed of a first metal is arranged inside the first portion of the interconnect opening. A second conductor layer composed of a second metal is arranged inside the second portion of the interconnect opening. The first metal is ruthenium.
Abstract:
The present disclosure relates to semiconductor structures and, more particularly, to skip via structures and methods of manufacture. The structure includes: a first wiring layer with one or more wiring structures; a second wiring layer with one or more wiring structures, located above the first wiring layer; a skip via with metallization, which passes through upper wiring levels including the second wiring layer and which makes contact with the one or more wiring structures of the first wiring layer; and a via structure which comprises a protective material and contacts at least one of the one or more wiring structures at the upper wiring level.
Abstract:
Devices and methods of fabricating devices are provided. One method includes: obtaining an intermediate semiconductor device having a dielectric layer, an insulating layer, and a plurality of metal lines, including a liner material and a first metal material; recessing the metal material of each metal line forming a set of cavities; filling the cavities with a protective cap; etching the protective cap and the liner material in the set of cavities; depositing a plurality of dielectric caps in the set of cavities; depositing an interlayer dielectric layer over the insulating layer and the plurality of dielectric caps; patterning a via in the interlayer dielectric layer; and depositing a lining and a second metal material in the interconnect area; wherein the second metal material is electrically insulated from the first metal in at least one of the plurality of metal lines.
Abstract:
The present disclosure generally relates to semiconductor structures and, more particularly, to fully aligned via structures having relaxed gapfills and methods of manufacture. The method includes: selectively depositing a capping material on a conductive material within a plurality of interconnect structures to form capped interconnect structures; depositing at least one insulator material over the capped interconnect structures; forming a fully aligned via structure through the at least one insulator material to expose the capping material; filling the fully aligned via structure with an alternative metal; and depositing a metal material on the alternative metal in the fully aligned via structure.
Abstract:
A device includes a first dielectric material and a plurality of conductive lines disposed in the first dielectric material. Each of the plurality of conductive lines includes a conductive fill material and a liner layer disposed between at least a bottom surface of the conductive fill material and the first dielectric material. The first dielectric material defines at least one air gap between two of the plurality of conductive lines. The at least one air gap has a first depth greater than a second depth of the plurality of conductive lines.
Abstract:
One illustrative method disclosed herein includes, among other things, forming an opening in at least one layer of insulating material so as to thereby expose at least a portion of a conductive contact, performing a selective metal silicide formation process to selectively form a metal silicide layer in the opening and on the conductive contact, depositing at least one conductive material above the selectively formed metal silicide layer so as to over-fill the opening, and performing at least one planarization process so as to remove excess materials and thereby define a conductive via that is positioned in the opening and conductively coupled to the selectively formed metal silicide layer and to the conductive contact.
Abstract:
In one example, a method includes forming a mask layer above or in a dielectric material. The dielectric material is exposed to photon radiation in an ambient atmosphere comprising a carbon gettering agent to generate damaged portions of the dielectric material. The mask layer blocks the photon radiation. The damaged portions of the dielectric material are removed.
Abstract:
Copper can be etched with selectivity to Ta/TaN barrier liner and SiC hardmask layers, for example, to reduce the potential copper contamination. The copper film can be recessed more than the liner to further enhance the protection. Wet etch solutions including a mixture of HF and HCl can be used for selective etching copper with respect to the liner material, for example, the copper film can be recessed between 2 and 3 nm, and the barrier liner film can be recessed between 1.5 and 2 nm.
Abstract:
Methods for producing integrated circuits are provided. A method for producing an integrated circuit includes forming an insulating layer overlying a substrate, where the insulating layer is formed within a trench. The insulating layer is infused with water, and the insulating layer is annealed while being irradiated. The insulating layer is annealed at a dry anneal temperature of about 800 degrees centigrade or less.