Abstract:
Embodiments of the present invention provide a high-K dielectric film for use with silicon germanium (SiGe) or germanium channel materials, and methods of fabrication. As a first step of this process, an interfacial layer (IL) is formed on the semiconductor substrate providing reduced interface trap density. However, an ultra-thin layer is used as a barrier film to avoid germanium diffusion in high-k film and oxygen diffusion from the high-k film to the interfacial layer (IL), therefore, dielectric films such as aluminum oxide (Al2O3), zirconium oxide, or lanthanum oxide (La2O3) may be used. In addition, these films can provide high thermal budget. A second dielectric layer is then deposited on the first dielectric layer. The second dielectric layer is a high-k dielectric layer, providing a reduced effective oxide thickness (EOT), resulting in improved device performance.
Abstract translation:本发明的实施方案提供了用于硅锗(SiGe)或锗通道材料的高K电介质膜及其制造方法。 作为该方法的第一步,在半导体衬底上形成界面层(IL),提供降低的界面陷阱密度。 然而,使用超薄层作为阻挡膜,以避免高k膜中的锗扩散和从高k膜到界面层(IL)的氧扩散,因此,诸如氧化铝(Al 2 O 3)的介电膜, ,氧化锆或氧化镧(La 2 O 3)。 此外,这些电影可以提供高热预算。 然后在第一介电层上沉积第二介电层。 第二电介质层是高k电介质层,提供有效的氧化物厚度(EOT)降低,从而提高器件性能。
Abstract:
An electrical device including a first semiconductor device having a silicon and germanium containing source and drain region, and a second semiconductor device having a silicon containing source and drain region. A first device contact to at least one of said silicon and germanium containing source and drain region of the first semiconductor device including a metal liner of an aluminum titanium and silicon alloy and a first tungsten fill. A second device contact is in contact with at least one of the silicon containing source and drain region of the second semiconductor device including a material stack of a titanium oxide layer and a titanium layer. The second device contact may further include a second tungsten fill.
Abstract:
Embodiments of the present invention provide a high-K dielectric film for use with silicon germanium (SiGe) or germanium channel materials, and methods of fabrication. As a first step of this process, an interfacial layer (IL) is formed on the semiconductor substrate providing reduced interface trap density. However, an ultra-thin layer is used as a barrier film to avoid germanium diffusion in high-k film and oxygen diffusion from the high-k film to the interfacial layer (IL), therefore, dielectric films such as aluminum oxide (Al2O3), zirconium oxide, or lanthanum oxide (La2O3) may be used. In addition, these films can provide high thermal budget. A second dielectric layer is then deposited on the first dielectric layer. The second dielectric layer is a high-k dielectric layer, providing a reduced effective oxide thickness (EOT), resulting in improved device performance.
Abstract:
Embodiments of the present invention provide a high-K dielectric film for use with silicon germanium (SiGe) or germanium channel materials, and methods of fabrication. As a first step of this process, an interfacial layer (IL) is formed on the semiconductor substrate providing reduced interface trap density. However, an ultra-thin layer is used as a barrier film to avoid germanium diffusion in high-k film and oxygen diffusion from the high-k film to the interfacial layer (IL), therefore, dielectric films such as aluminum oxide (Al2O3), zirconium oxide, or lanthanum oxide (La2O3) may be used. In addition, these films can provide high thermal budget. A second dielectric layer is then deposited on the first dielectric layer. The second dielectric layer is a high-k dielectric layer, providing a reduced effective oxide thickness (EOT), resulting in improved device performance.
Abstract translation:本发明的实施方案提供了用于硅锗(SiGe)或锗通道材料的高K电介质膜及其制造方法。 作为该方法的第一步,在半导体衬底上形成界面层(IL),提供降低的界面陷阱密度。 然而,使用超薄层作为阻挡膜,以避免高k膜中的锗扩散和从高k膜到界面层(IL)的氧扩散,因此,诸如氧化铝(Al 2 O 3)的介电膜, ,氧化锆或氧化镧(La 2 O 3)。 此外,这些电影可以提供高热预算。 然后在第一介电层上沉积第二介电层。 第二电介质层是高k电介质层,提供有效的氧化物厚度(EOT)降低,从而提高器件性能。
Abstract:
An electrical device including a first semiconductor device having a silicon and germanium containing source and drain region, and a second semiconductor device having a silicon containing source and drain region. A first device contact to at least one of said silicon and germanium containing source and drain region of the first semiconductor device including a metal liner of an aluminum titanium and silicon alloy and a first tungsten fill. A second device contact is in contact with at least one of the silicon containing source and drain region of the second semiconductor device including a material stack of a titanium oxide layer and a titanium layer. The second device contact may further include a second tungsten fill.
Abstract:
A method of forming contacts over active gates is provided. Embodiments include forming first and second gate structures over a portion of a fin; forming a first and second RSD in a portion of the fin between the first gate structures and between the first and the second gate structure, respectively; forming TS structures over the first and second RSD; forming a first cap layer over the first and second gate structures or over the TS structures; forming a metal oxide liner over the substrate, trenches formed; filling the trenches with a second cap layer; forming an ILD layer over the substrate; forming a CA through a first portion of the ILD and metal oxide layer down to the TS structures over the second RSD; and forming a CB through a second portion of the ILD and metal oxide layer down to the first gate structures.
Abstract:
An electrical device including a first semiconductor device having a silicon and germanium containing source and drain region, and a second semiconductor device having a silicon containing source and drain region. A first device contact to at least one of said silicon and germanium containing source and drain region of the first semiconductor device including a metal liner of an aluminum titanium and silicon alloy and a first tungsten fill. A second device contact is in contact with at least one of the silicon containing source and drain region of the second semiconductor device including a material stack of a titanium oxide layer and a titanium layer. The second device contact may further include a second tungsten fill.
Abstract:
In an embodiment, a method comprises fitting a spectroscopic data of a layer in a layered structure to a dielectric function having a real part and an imaginary part; confirming that the dielectric function is physically possible; based on the dielectric function not being physically possible, repeating the fitting the spectroscopic data, or, based on the dielectric function being physically possible, defining an n degree polynomial to the dielectric function; determining a second derivative and a third derivative of the n degree polynomial; equating the second derivative to a first governing equation and the third derivative to a second governing equation and determining a constant of the first governing equation and the second governing equation; and based on the key governing equations, determining one or more of a band gap, a thickness, and a concentration of the layer.
Abstract:
A method can include forming a contact trench in a semiconductor structure so that the contact trench extends to a contact formation, the forming including using a hardmask layer, and filling the contact trench with a sacrificial material layer, the sacrificial material layer formed over the contact formation. A semiconductor structure can include a sacrificial material layer over a contact formation.
Abstract:
Surface pretreatment of SiGe or Ge surfaces prior to gate oxide deposition cleans the SiGe or Ge surface to provide a hydrogen terminated surface or a sulfur passivated (or S—H) surface. Atomic layer deposition (ALD) of a high-dielectric-constant oxide at a low temperature is conducted in the range of 25-200° C. to form an oxide layer. Annealing is conducted at an elevated temperature. A method for oxide deposition on a damage sensitive III_V semiconductor surface conducts in-situ cleaning of the surface with cyclic pulsing of hydrogen and TMA (trimethyl aluminum) at a low temperature in the range of 100-200° C. Atomic layer deposition (ALD) of a high-dielectric-constant oxide forms an oxide layer. Annealing is conducted at an elevated temperature. The annealing can create a silicon terminated interfaces.