Abstract:
Provided are: a device for storing biochemical reagents wherein an amount of a reagent can be hermetically stored and dropped from a storage site without coming into contact with the outside air; and a biochemical analyzer using the device. The device (10) is constituted by: sticking a top sheet (32) to a base sheet (31) provided with a convex-shaped hollow pocket (16) in which a reagent can be housed; a reagent container as a PTP packaging sheet (30) wherein an opening of the pocket in the base sheet (31), in which a reagent is preliminarily housed, is hermetically sealed with the top sheet (32); and sticking the film sheet surface as the top sheet (32) of the PTP packaging sheet (30), in which the reagent is hermetically packaged, to a cartridge surface of a device body (20) to thereby hermetically seal the inside of the device body too.
Abstract:
To allow fully automated implementation of all steps of from pre-processing up to electrophoresis. Provided is a pre-processing/electrophoresis integrated cartridge including one or more block structures corresponding to the individual steps of pre-processing. Each block structure includes (1) a first block having a reaction tank, a reagent tank, a plurality of flow channels that connect the tanks, a plurality of control valves arranged in the flow channels, and a flow channel that connects a reaction tank in a block structure located at a preceding stage and a reaction tank in a block structure located at a next stage, and (2) a second block having a phoretic solution tank, a cathode buffer solution tank, a wash solution tank, a flow channel that connects a carrier tank in the block structure located at the preceding stage and the phoretic solution tank, and a control valve for the flow channel.
Abstract:
An electrophoresis device has: a sample tray (112) on which there are placed a positive-electrode-side buffer solution container (103) containing a buffer solution and a phoresis medium container (102) containing a phoresis medium, and which is driven in a vertical direction and a horizontal direction; a thermostat oven unit (113) that holds a capillary array having a capillary head in which a plurality of capillaries are bundled in a single unit at one end thereof in a state where the capillary array being held in a state in which the capillary head protrudes downward, and that keeps the interior temperature constant; a solution-delivering mechanism (106) for delivering the phoresis medium in the phoresis medium container to the capillary array from the capillary head; and a power source for applying a voltage to both ends of the capillary array. Holes for insertion of the capillary head are provided in upper sections of the positive-electrode-side buffer solution container and the phoresis medium container. The thermostat oven unit is provided with a first lid member (207) that is positioned above the sample tray and seals the upper section of the positive-electrode-side buffer solution container while the phoresis medium is being delivered by the solution-delivering mechanism.
Abstract:
Provided is an electrophoresis device that, by electrophoresis, feeds a sample into capillaries and optically detects the sample, the electrophoresis device being provided with capillaries, a capillary head provided at the distal end of the capillaries, a phoretic medium-filled container used for electrophoresis and filled with a phoretic medium, a guide member that covers the side surface of the phoretic medium-filled container, a seal member that seals from below the phoretic medium filled in the phoretic medium-filled container, and a plunger that presses the seal member.
Abstract:
A laser beam 6 irradiated from a side face of a microchip 1 in which plural channels 2 fill ed with a member of a refractive index n2 in an inner portion of a member of a refractive index n1 (n2 lower base, and is deviated swiftly from a channel array. Hence, the laser beam 6 is made to be deviated gradually from the channel array by irradiating the laser beam 6 from the side face of the microchip 1 by being inclined relative to the same plane in a direction of being directed from the lower base to the upper base. As a result, a larger number of the channels 2 can efficiently be subjected to laser beam irradiation.
Abstract:
Provided are: a device for storing biochemical reagents wherein an amount of a reagent can be hermetically stored and dropped from a storage site without coming into contact with the outside air; and a biochemical analyzer using the device. The device (10) is constituted by: sticking a top sheet (32) to a base sheet (31) provided with a convex-shaped hollow pocket (16) in which a reagent can be housed; a reagent container as a PTP packaging sheet (30) wherein an opening of the pocket in the base sheet (31), in which a reagent is preliminarily housed, is hermetically sealed with the top sheet (32); and sticking the film sheet surface as the top sheet (32) of the PTP packaging sheet (30), in which the reagent is hermetically packaged, to a cartridge surface of a device body (20) to thereby hermetically seal the inside of the device body too.
Abstract:
A technique for performing spectral calibration simultaneously with electrophoresis of an actual sample to be analyzed, without performing electrophoresis using a special matrix standard which is time-consuming and costly, is provided. The device for genotypic analysis is characterized by obtaining reference fluorescence spectra using a size standard and an allelic ladder, which provide information concerning known DNA fragments used for electrophoresis of an actual sample, and is characterized by performing spectral calibration for a capillary in which the allelic ladder is not used by detecting a shift amount of the fluorescence spectra of the size standard and shifting the reference fluorescence spectra using the shift amount to determine fluorescence spectra.
Abstract:
The capillary electrophoresis apparatus according to the present invention can maintain the temperature in the longitudinal direction of each of a plurality of capillaries uniformly, such that the separation performance of the capillary electrophoresis apparatus can be stabilized, and the analysis performance can be improved. A capillary electrophoresis apparatus according to the present invention includes: a thermostat having a heat source, a first heat conduction member, and a detection window for detecting a sample, the thermostat being configured to maintain a capillary at a predetermined temperature; a capillary holder having a second heat conduction member for sandwiching the capillary between the second heat conduction member and the first heat conduction member, the capillary holder being configured to hold the capillary; and a detection unit configured to detect a sample to be electrophoresed in the capillary, wherein in the heat source, a heat generation amount of at least one of a periphery of the detection window and an end of the capillary is higher than a heat generation amount of another portion.
Abstract:
Provided is a nucleic acid analyzer, which does not require manual processes by a highly trained operator such as a researcher and is easy to use, small-sized, capable of accepting multiple samples, and performs speedy analysis, and a nucleic acid analysis method using the analyzer. The analyzer and method perform detection in a plurality of exposure times, provide a program for determining a threshold for signal detection, and determine whether a faint signal peak is a false signal peak.