Abstract:
A semiconductor chip package is disclosed. The package includes a carrier, a plurality of semiconductor chips disposed on the carrier, a first encapsulation layer disposed above the semiconductor chips. A metallization layer is disposed above the first encapsulation layer, the metallization layer including a plurality of first metallic areas forming electrical connections between selected ones of the semiconductor chips. A second encapsulation layer is disposed above the solder resist layer. A plurality of external connectors are provided, each one of the external connectors being connected with one of the first metallic areas and extending outwardly through a surface of the second encapsulation layer.
Abstract:
An electronic module is provided, which comprises a first carrier; an electronic chip comprising at least one electronic component and arranged on the first carrier; a spacing element comprising a surface arranged on the electronic chip and being in thermal conductive connection with the at least one electronic component; a second carrier arranged on the spacing element; and a mold compound enclosing the electronic chip and the spacing element at least partially; wherein the spacing element comprises a material having a CTE value being matched with at least one other CTE.
Abstract:
A chip arrangement is provided, the chip arrangement, including a carrier; at least one chip electrically connected to a carrier top side; an encapsulation material at least partially surrounding the at least one chip and the carrier top side, wherein the encapsulation material is formed on one or more lateral sides of the carrier; and a ceramic material disposed on a carrier bottom side, and on at least one side of the encapsulation material.
Abstract:
A package includes: at least one electronic chip; an encapsulant encapsulating at least part of the at least one electronic chip; a shielding layer on at least part of an external surface of the encapsulant; and a first heat removal body thermally coupled to the at least one electronic chip and configured for removing thermal energy from the at least one electronic chip to a cooling fluid. The encapsulant has a surface portion that extends in a surface region extending laterally directly adjacent to the first heat removal body. The surface portion of the encapsulant delimits part of a cooling cavity configured to guide the cooling fluid. The shielding layer covers the surface portion of the encapsulant. A corresponding electronic device, method of manufacturing the package, method of manufacturing the electronic device, vehicle, and method of using the electronic device are also described.
Abstract:
A package which comprises at least one electronic chip, an encapsulant encapsulating at least part of the at least one electronic chip, and a shielding layer on at least part of an external surface of the encapsulant configured for shielding an interior of the package with regard to cooling fluid for removing thermal energy from the at least one electronic chip.
Abstract:
A method of manufacturing a package, wherein the method comprises a forming a chip carrier by covering a thermally conductive and electrically insulating core on both opposing main surfaces thereof at least partially by a respective electrically conductive layer by brazing the respective electrically conductive layer on a respective one of the main surfaces; a mounting at least one electronic chip on the chip carrier; an electrically coupling an electrically conductive contact structure with the at least one electronic chip; and an encapsulating part of the electrically conductive contact structure, and at least part of the chip carrier and of the at least one electronic chip by a mold-type encapsulant.
Abstract:
A package comprising at least one electronic chip, an encapsulant encapsulating at least part of the at least one electronic chip, a first electrically conductive contact structure extending partially within and partially outside of the encapsulant and being electrically coupled with at least one first terminal of at least one of the at least one electronic chip, and a second electrically conductive contact structure extending partially within and partially outside of the encapsulant and being electrically coupled with at least one second terminal of at least one of the at least one electronic chip, wherein at least a portion of the first electrically conductive contact structure and at least a portion of the second electrically conductive contact structure within the encapsulant are spaced in a direction between two opposing main surfaces of the package.
Abstract:
A semiconductor chip package is disclosed. The package includes a carrier, a plurality of semiconductor chips disposed on the carrier, a first encapsulation layer disposed above the semiconductor chips. A metallization layer is disposed above the first encapsulation layer, the metallization layer including a plurality of first metallic areas forming electrical connections between selected ones of the semiconductor chips. A second encapsulation layer is disposed above the solder resist layer. A plurality of external connectors are provided, each one of the external connectors being connected with one of the first metallic areas and extending outwardly through a surface of the second encapsulation layer.
Abstract:
A chip arrangement is provided, the chip arrangement, including a carrier; at least one chip electrically connected to a carrier top side; an encapsulation material at least partially surrounding the at least one chip and the carrier top side, wherein the encapsulation material is formed on one or more lateral sides of the carrier; and a ceramic material disposed on a carrier bottom side, and on at least one side of the encapsulation material.
Abstract:
According to an exemplary embodiment, a power module is provided which comprises a semiconductor chip, a bonding substrate comprising an electrically conductive sheet and an electric insulator sheet which is directly attached to the electrically conductive sheet and which is thermally coupled to the semiconductor chip, and an array of cooling structures directly attached to the electrically conductive sheet and configured for removing heat from the semiconductor chip when interacting with cooling fluid.