Abstract:
A thermoelectric device includes a plurality of first semiconductor mesa structures having a first conductivity type and a plurality of second semiconductor mesa structures having a second conductivity type. First semiconductor mesa structures of the plurality of first semiconductor mesa structures and second semiconductor mesa structures of the plurality of second semiconductor mesa structures are electrically connected in series. The thermoelectric device further includes a glass structure made of at least one of a borosilicate glass, boron-zinc-glass and a low transition temperature glass. The glass structure is arranged laterally between the first semiconductor mesa structures of the plurality of first semiconductor mesa structures and the second semiconductor mesa structures of the plurality of second semiconductor mesa structures. The glass structure electrically insulates the first semiconductor mesa structures of the plurality of first semiconductor mesa structures laterally from the second semiconductor mesa structures of the plurality of second semiconductor mesa structures.
Abstract:
A packaged component and a method for making a packaged component are disclosed. In an embodiment the packaged component includes a component carrier having a component carrier contact and a component disposed on the component carrier, the component having a component contact. The packaged component further includes a conductive connection element connecting the component carrier contact with the component contact, an insulating film disposed directly at least on one of a top surface of the component or the conductive connection element, and an encapsulant encapsulating the component carrier, the component and the enclosed conductive connection elements.
Abstract:
One aspect is a device including a carrier comprising a first conducting layer, a first insulating layer over the first conducting layer, and at least one first through-connection from a first face of the first insulating layer to a second face of the first insulating layer. A semiconductor chip is attached to the carrier and a second insulating layer is over the carrier and the semiconductor chip. A metal layer is over the second insulating layer. A second through-connection is through the second insulating layer electrically coupling the semiconductor chip to the metal layer. A third through-connection is through the second insulating layer electrically coupling the carrier to the metal layer.
Abstract:
A chip arrangement is provided, the chip arrangement, including a carrier; at least one chip electrically connected to a carrier top side; an encapsulation material at least partially surrounding the at least one chip and the carrier top side, wherein the encapsulation material is formed on one or more lateral sides of the carrier; and a ceramic material disposed on a carrier bottom side, and on at least one side of the encapsulation material.
Abstract:
A system has a circuit board, an integrated circuit being mounted on the circuit board by external contacts, and a cover irreversibly connected to the circuit board. The cover covers the external contacts so that external access to the external contacts is prohibited by the cover.
Abstract:
Various embodiments provide a wafer box. The wafer box may include a housing with a receiving space for receiving at least one wafer arranged above a housing base, at least one fixing structure which is connected to the housing base and which extends from the housing base, and at least one fixing device which is fastenable to the at least one fixing structure at a variable distance from the housing base. The fixing device and the fixing structure are designed such that the at least one wafer for arrangement in the receiving space can be fixed in a position by means of the at least one fixing device fastened to the fixing structure.
Abstract:
Micromechanical semiconductor sensing device comprises a micromechanical sensing structure being configured to yield an electrical sensing signal, and a piezoresistive sensing device provided in the micromechanical sensing structure, said piezoresistive sensing device being arranged to sense a mechanical stress disturbing the electrical sensing signal and being configured to yield an electrical disturbance signal based on the sensed mechanical stress disturbing the electrical sensing signal.
Abstract:
A chip arrangement is provided, the chip arrangement, including a carrier; a first chip electrically connected to the carrier; a ceramic layer disposed over the carrier; and a second chip disposed over the ceramic layer; wherein the ceramic layer has a porosity in the range from about 3% to about 70%.
Abstract:
A micromechanical semiconductor sensing device is disclosed. In an embodiment the sensing device includes a micromechanical sensing structure being configured to yield an electrical sensing signal, and a piezoresistive sensing device provided in the micromechanical sensing structure, the piezoresistive sensing device being arranged to sense a mechanical stress disturbing the electrical sensing signal and being configured to yield an electrical disturbance signal based on the sensed mechanical stress disturbing the electrical sensing signal.
Abstract:
Micromechanical semiconductor sensing device comprises a micromechanical sensing structure being configured to yield an electrical sensing signal, and a piezoresistive sensing device provided in the micromechanical sensing structure, said piezoresistive sensing device being arranged to sense a mechanical stress disturbing the electrical sensing signal and being configured to yield an electrical disturbance signal based on the sensed mechanical stress disturbing the electrical sensing signal.