Abstract:
A memory management system and a method of managing a memory device are described. The system includes a memory device with a memory array to store data and associated error correction coding (ECC) bits and an extended correction table. The extended correction table stores error information additional to the ECC bits for one or more of the data in the memory array. The system also includes a controller to control the memory device to write and read the data.
Abstract:
Error checking and correcting (ECC) may be performed in an on-chip memory where an error is corrected by a controller and not the on-chip memory. The controller may be flagged to show that an error has occurred and where it has occurred in the memory. The controller may access ECC bits associated with the error and may fix incorrect data. The error checking may be done in parallel with read operations of the memory so as to lower latency.
Abstract:
Embodiments of the present disclosure provide an approach for monitoring the health and predicting the failure of dynamic random-access memory (DRAM) devices with embedded error-correcting code (ECC). Additional registers are embedded on the DRAM device to store information about the DRAM, such as the number and location of soft errors detected by the device. When the DRAM device detects a soft error, it will update the information stored in the additional registers. A controller compares the information stored in the additional registers to associated thresholds. In some embodiments, after comparing the information to the associated thresholds, the controller may determine whether to schedule a repair action. In other embodiments, the controller may determine whether to alert the memory controller that the DRAM may be failing.
Abstract:
Keys are generated at a memory device with a period of time elapsing between generation of each key. A request is received from a memory controller for the most recently generated key. The memory device communicates the first key to the memory controller. Access to nonvolatile memory on the memory device is locked. An unlock command with a second key is received from the memory controller. The memory device determines that the second key matches the first key and unlocks access to the nonvolatile memory in response.
Abstract:
A system and method for efficient data eye training reduces the time and resources spent calibrating one or more memory devices. A temporal calibration mechanism reduces the time and resources for calibration by reducing the number tests needed to sufficiently determine the boundaries of the data eye of the memory device. For one or more values of the voltage reference, the temporal calibration mechanism performs a minimal number of tests to find the edges of the data eye for the hold and setup times.
Abstract:
A system and method for efficient data eye training reduces the time and resources spent calibrating one or more memory devices. A reference voltage (Vref) calibration mechanism reduces the time and resources for calibration by reducing the number of tests needed to sufficiently determine the boundaries of the data eye of the memory device by using a combination of small steps and small steps to find a preferred reference voltage. In one example, the Vref calibration mechanism uses small steps of the reference voltage in a first range above a nominal reference voltage to find a maximum eye width then uses small steps to more precisely find the maximum eye width. If a maximum reference voltage is found in the first range then the second range below the nominal reference voltage does not need to be tested thereby saving additional time and resources.
Abstract:
Embodiments of the present disclosure provide an approach for monitoring the health and predicting the failure of dynamic random-access memory (DRAM) devices with embedded error-correcting code (ECC). Additional registers are embedded on the DRAM device to store information about the DRAM, such as the number and location of soft errors detected by the device. When the DRAM device detects a soft error, it will update the information stored in the additional registers. A controller compares the information stored in the additional registers to associated thresholds. In some embodiments, after comparing the information to the associated thresholds, the controller may determine whether to schedule a repair action. In other embodiments, the controller may determine whether to alert the memory controller that the DRAM may be failing.
Abstract:
A correctable memory error may be identified at a first address within a memory device. Based on at least the identifying, a first correctable memory error count may be updated from a first quantity to a second quantity. The second quantity may be determined to exceed or not exceed a threshold. In response to the determining, the first correctable memory error count of the second quantity may be: converted to a third quantity and reported to a host device accordingly, reported to a host device, or not reported to a host device.
Abstract:
Embodiments of the present disclosure provide a method, computer program product, and system for monitoring a dynamic random-access memory (DRAM) device to detect and respond to a cryogenic attack. A processor receives a set of memory information about a DRAM device. The processor then determines a set of error indicators by processing the memory information using a set of decision parameters. The error indicators are then compared to an attack syndrome to determine if the DRAM is experiencing a cryogenic attack. If the DRAM is experiencing a cryogenic attack, access to the DRAM device is disabled.
Abstract:
Embodiments of the present disclosure describe a device and methods of accessing the device. The device can include a plurality of memory cells, each cell including a plurality of resistive memory components each designed to store data as resistance and an access transistor configured to control access to the plurality of resistive memory components. A wordline is configured to enable access to the set of resistor memory components by enabling the access transistor. A plurality of bitlines are each connected to a respective and different set of resistive memory components from each of the plurality of memory cells. A bitline controller is configured to access the plurality of resistive memory components by applying a first voltage to a first set of the plurality of bitlines and a second voltage to a second set of bitlines.