Abstract:
A stacked memory with interface providing offset interconnects. An embodiment of memory device includes a system element and a memory stack coupled with the system element, the memory stack including one or more memory die layers. Each memory die layer includes first face and a second face, the second face of each memory die layer including an interface for coupling data interface pins of the memory die layer with data interface pins of a first face of a coupled element. The interface of each memory die layer includes connections that provide an offset between each of the data interface pins of the memory die layer and a corresponding data interface pin of the data interface pins of the coupled element.
Abstract:
Examples are disclosed for accessing a dynamic random access memory (DRAM) array. In some examples, sub-arrays of a DRAM bank may be capable of opening multiple pages responsive to a same column address strobe. In other examples, sub-arrays of a DRAM bank may be arranged such that input/output (IO) bits may be routed in a serialized manner over an IO wire. For these other examples, the IO wire may pass through a DRAM die including the DRAM bank and/or may couple to a memory channel or bus outside of the DRAM die. Other examples are described and claimed.
Abstract:
A mechanism is described for facilitating write tracking for following data eye movements across changing thermal conditions in memory systems according to one embodiment of the invention. A method of embodiments of the invention includes monitoring movements of a valid data eye associated with a memory device of a plurality of memory devices of a memory system at a computing system. The monitoring may include initiating write commands during one or more refresh periods associated with the valid data eye. The method may include determining drifting in the movement of the data eye, and correcting the drifting based on adjusting one or more existing phase interpolator values associated with the movements of the data eye.
Abstract:
Examples are disclosed for accessing a dynamic random access memory (DRAM) array. In some examples, sub-arrays of a DRAM bank may be capable of opening multiple pages responsive to a same column address strobe. In other examples, sub-arrays of a DRAM bank may be arranged such that input/output (IO) bits may be routed in a serialized manner over an IO wire. For these other examples, the IO wire may pass through a DRAM die including the DRAM bank and/or may couple to a memory channel or bus outside of the DRAM die. Other examples are described and claimed.
Abstract:
A close proximity memory arrangement maintains a point to point association between DQs, or data lines, to DRAM modules employs a clockless state machine on a DRAM side of the memory controller-DRAM interface such that a single FIFO on the memory controller side synchronizes or orders the DRAM fetch results. Addition of a row address (ROW-ADD) and column address (COL-ADD) strobe reducing latency and power demands. Close proximity point to point DRAM interfaces render the DRAM side FIFO redundant in interfaces such as direct stacked 3D DRAMs on top of the logic die hosting the memory controller. The close proximity point to point arrangement eliminates the DRAM internal FIFO and latency scheme, resulting in just the memory controller internal clock domain crossing FIFOs.