Abstract:
A battery module includes a housing having an opening and an electrochemical cell disposed in the housing. The electrochemical cell includes a first cell surface having electrode terminals and an second cell surface substantially opposite the first cell surface. The battery module also includes a heat sink integral with the housing and disposed substantially opposite the opening of the housing and a thermally conductive adhesive bonded to the second cell surface and a heat sink surface that is facing the second cell surface. The thermally conductive adhesive includes a bonding shear strength and bonding tensile strength between the electrochemical cell and the heat sink of between approximately 5 megaPascals (MPa) and 50 MPa.
Abstract:
Systems are disclosed for battery modules having a plurality of electrochemical cells and cooling systems. According to one embodiment, a battery system includes a plurality of battery modules. Each battery module includes a plurality of electrochemical cells in thermal contact with a heat sink. The heat sink may utilize a plurality of fins and a fluid (e.g., air) to cool or heat the electrochemical cells. The electrochemical cells each have a positive terminal blade and a negative terminal blade that function as external terminals for the cell. The negative terminal blade is electrically isolated from the cover of the cell and is configured to be coupled to an internal negative terminal of the cell.
Abstract:
The present disclosure includes a battery module having a plurality of battery cells disposed in a housing. Each of the plurality of battery cells has a positive terminal, a negative terminal, an overcharge protection assembly, and a casing having an electrically conductive material. The overcharge protection assembly includes a vent, a first spring component, a second spring component, and an insulative component. The first spring component is coupled to the positive terminal, the second spring component is coupled to the negative terminal, the insulative component is between the first spring component and a conductive piece and between the second spring component and the conductive piece, and the vent is configured to drive the insulative component from between the first and second spring components and the conductive piece, such that the first and second spring components contact the conductive piece, when a pressure in the casing exceeds a threshold.
Abstract:
The present disclosure relates to a battery module having a housing and a stack of battery cells disposed in a receptacle area of the housing, where each battery cell has a top having a battery cell terminal and a bottom, where the top of the battery cells face outwardly away from the receptacle area. The battery module includes an integrated sensing and bus bar subassembly positioned against the stack of battery cells and has a carrier, a bus bar integrated onto the carrier, and a biasing member integrated onto the carrier. The bus bar electrically couples battery cells in an electrical arrangement, and the biasing member is between the top of each battery cell and the carrier, where the biasing member has a first material, more compliant than a second material of the carrier, and the biasing member biases the stack of battery cells inwardly toward the housing.
Abstract:
The present disclosure includes a lithium-ion battery module that has a housing and a plurality of lithium-ion battery cells disposed in the housing. Each of the plurality of lithium-ion battery cells includes a first terminal with a first polarity, a second terminal with a second polarity opposite to the first polarity, an overcharge protection assembly, and a casing electrically coupled to the first terminal such that the casing has the first polarity, where the casing has an electrically conductive material. The lithium-ion battery module also includes a vent of the overcharge protection assembly electrically coupled to the casing and a conductive component of the overcharge protection assembly electrically coupled to the second terminal, and the vent is configured to contact the conductive component to cause a short circuit and to vent a gas from the casing into the housing when a pressure in the casing reaches a threshold value.
Abstract:
A prismatic lithium ion battery cell includes a packaging having a cover. The cover includes: a first spiral disk feature disposed below a first terminal pad; a second spiral disk feature disposed below a second terminal pad; a first reversal disk disposed below the first spiral disk feature; and a second reversal disk disposed below the second spiral disk feature. The first and second reversal disks are configured to deflect upwards to displace the first and second spiral disk features to contact the first and second terminal pads, respectively, in response to a pressure within the packaging being greater than a predefined pressure threshold and form an external short-circuit between the first and second terminal pads via the first and second spiral disk features. Subsequently, a portion of the power assembly fails in response to the external short-circuit and interrupts current flow between the first and second terminal pads.
Abstract:
The present disclosure provides a battery pack including a housing, wherein the housing has a bottom portion and side walls extending upward around a periphery of the bottom portion; an upper portion opening is formed at top ends of the side walls extending upward; an upper cover is mounted on the upper portion opening of the housing; and the battery pack comprises: multiple flat battery cells; and a first end plate and a second end plate, wherein when the multiple battery cells are sequentially arranged and mounted into the housing from the upper portion opening, the first end plate and the second end plate are located at two end sides of the sequentially arranged multiple battery cells to laterally fix the sequentially arranged multiple battery cells. The two end plates may absorb deformation of the battery cell while expanding.
Abstract:
A battery module includes a battery module housing, a heat exchanger including a plurality of fins disposed in the housing, a first lithium ion battery cell and a second lithium ion battery cell disposed within the battery module housing. The first lithium ion battery cell and the second lithium ion battery cell are separated by a fin of the plurality of fins. The module includes a temperature sensing component coupled to the fin separating the first and second battery cells. Filler material is disposed within the housing and between the battery cells and the fins to mechanically restrain the battery cells within the battery module housing. The filler materials conduct thermal energy between the battery cells and the fin. The filler material covers a free end of the fin and the temperature sensing component. The temperature sensing component is coupled to a conductor extending out of the filler material.
Abstract:
The present disclosure relates to a battery module having a housing and a stack of battery cells disposed in a receptacle area of the housing, where each battery cell has a top having a battery cell terminal and a bottom, where the top of the battery cells face outwardly away from the receptacle area. The battery module includes an integrated sensing and bus bar subassembly positioned against the stack of battery cells and has a carrier, a bus bar integrated onto the carrier, and a biasing member integrated onto the carrier. The bus bar electrically couples battery cells in an electrical arrangement, and the biasing member is between the top of each battery cell and the carrier, where the biasing member has a first material, more compliant than a second material of the carrier, and the biasing member biases the stack of battery cells inwardly toward the housing.
Abstract:
The present disclosure includes a battery module having a group of electrically interconnected electrochemical cells, a battery module terminal configured to be coupled to a load for powering the load, and an electrical path extending between the group of electrically interconnected electrochemical cells and the battery module terminal, where the electrical path includes a bus bar bridge. The battery module also includes a housing, where the group of electrically interconnected electrochemical cells is disposed within the housing, and the housing includes a pair of extensions positioned along sides of the bus bar bridge and configured to retain the bus bar bridge and to block movement of the bus bar bridge in at least one direction.