摘要:
Methods and reworked intermediate and resultant electronic modules made thereby, whereby a component in need of rework is located and removed from the module to reveal encapsulated solder connections residing within an underfill matrix. Heights of both the solder connections and underfill matrix are reduced, followed by etching the solder out of the solder connections to form openings within the underfill matrix. The underfill material is then removed to expose metallurgy of the substrate. A blank having a release layer with an array of solder connections is aligned with the exposed metallurgy, and this solder array is transferred from the blank onto the metallurgy. The transferred solder connections are then flattened using heat and pressure, followed by attaching solder connections of a new component to the flattened solder connections and underfilling these reworked solder connections residing between the new chip and substrate.
摘要:
This invention relates to the cleaning of objects that relate to semiconductor printing, such as, for example, screening masks. This invention is basically directed to removing, for example, an organic polymer-metal composite paste from screening masks used in printing conductive metal patterns onto ceramic green sheets in the fabrication of semiconductor packaging substrates. More particularly, this invention is concerned with the automated in-line cleaning of paste screening masks with an aqueous alkaline solution of a quaternary ammonium hydroxide as a more environmentally friendly alternative to non-aqueous organic solvents-based cleaning in screening operations for the production multilayer ceramic (MLC) substrates.
摘要:
This invention relates to the cleaning of objects that relate to semiconductor printing, such as, for example, screening masks. This invention is basically directed to removing, for example, an organic polymer-metal composite paste from screening masks used in printing conductive metal patterns onto ceramic green sheets in the fabrication of semiconductor packaging substrates. More particularly, this invention is concerned with the automated in-line cleaning of paste screening masks with an aqueous alkaline solution of a quaternary ammonium hydroxide as a more environmentally friendly alternative to non-aqueous organic solvents-based cleaning in screening operations for the production multilayer ceramic (MLC) substrates.
摘要:
Methods and reworked intermediate and resultant electronic modules made thereby, whereby a component in need of rework is located and removed from the module to reveal encapsulated solder connections residing within an underfill matrix. Heights of both the solder connections and underfill matrix are reduced, followed by etching the solder out of the solder connections to form openings within the underfill matrix. The underfill material is then removed to expose metallurgy of the substrate. A blank having a release layer with an array of solder connections is aligned with the exposed metallurgy, and this solder array is transferred from the blank onto the metallurgy. The transferred solder connections are then flattened using heat and pressure, followed by attaching solder connections of a new component to the flattened solder connections and underfilling these reworked solder connections residing between the new chip and substrate.
摘要:
A process of cleaning of objects that relate to semiconductor fabrication processes, such as, for example, conductive paste screening in the production of multilayer ceramic substrates and composite solder paste by stencil printing in electronic circuit assembly. Specifically, the process removes a metal/polymer composite paste from screening masks and associated paste making and processing equipment used in printing conductive metal pattern onto ceramic green sheet in the fabrication of semiconductor packaging substrates. The process also cleans solder paste residue from stencil printing equipment used in electronic module assembly surface mount technology for SMT discretes, solder column attachment, and BGA (Ball Grid Array) attachment on ceramic chip carrier or for screening solder paste onto printed circuit board. More particularly, paste residue is cleaned from metal, ceramic, and plastic substrates by a non-alkaline semi-aqueous cleaning method employing high boiling propylene glycol alkyl ether or mixtures of propylene glycol alkyl ether and propylene glycol solvents.
摘要:
A method of forming an electrical connector including providing a metallic sheet having a multitude of connector blanks formed therein, each of the connector blanks having a base portion, a contact portion and a singulation arm; forming each of the connector blanks into a connector having a predetermined shape wherein each of the connectors remain connected to the metallic sheet by their respective singulation arms and wherein the singulation arms are nonplanar with respect to the metallic sheet; joining the base of each of the connectors to a first substrate; and severing the singulation arms to separate each of the connectors from the metallic sheet wherein the base of each of the connectors is joined to the first substrate. In a preferred embodiment, the contact portion contacts a second substrate.
摘要:
This invention relates to the use of water-based cleaning solutions and their use as environmentally safe replacements of chlorinated hydrocarbon solvents to remove metal-polymer composite paste residue from screening masks and ancillary equipment, such as, used for screening a conductive metal pattern on a ceramic green sheet in the manufacture of multi-layer ceramic products.
摘要:
Forming a green multi-layer component with an embedded pattern of barrier material, which may be in the form of a positive pattern to form a recessed area or in the form of a negative pattern to form raised areas on the component. Peripheral channels are machined into the green laminate surface to outline each negative or positive pattern feature, the channels being cut deep and wide enough to contact and overlap the edges of the barrier material. The layer of barrier material and the overlying layer(s) of ceramic material are separated from the remainder of the component to produce a non-planar part having raised areas in the case of a negative pattern of barrier material or a part having recessed areas in the case of a positive pattern of barrier material. An apparatus and process to control the machining depth of cut using both AC and DC sensing techniques is disclosed. The non-planar component may be provided with recessed surface metallurgy, such as seal bands and filled via connections, which can survive planarization.
摘要:
Forming a green multi-layer component with an embedded pattern of barrier material, which may be in the form of a positive pattern to form a recessed area or in the form of a negative pattern to form raised areas on the component. Peripheral channels are machined into the green laminate surface to outline each negative or positive pattern feature, the channels being cut deep and wide enough to contact and overlap the edges of the barrier material. The layer of barrier material and the overlying layer(s) of ceramic material are separated from the remainder of the component to produce a non-planar part having raised areas in the case of a negative pattern of barrier material or a part having recessed areas in the case of a positive pattern of barrier material. An apparatus and process to control the machining depth of cut using both AC and DC sensing techniques is disclosed. The non-planar component may be provided with recessed surface metallurgy, such as seal bands and filled via connections, which can survive planarization.
摘要:
Methods to create raised pedestal parts in ceramic substrates sintered under a load. The invention uses a patterned, buried, non-sintering layer that provides the needed transfer of load during the sintering process to the raised or pedestal portion of the substrate while maintaining dimensional control of the metallized features on the surface of the pedestal base. The methods involve cutting channels in the ceramic substrate corresponding in position to the perimeter of the opening in the patterned non-sintering contact sheet. The channels may be cut either before or after the sintering of the ceramic substrates.