摘要:
Seamed belts, particularly puzzle-cut imageable seam intermediate transfer belts, and marking machines that use such belts, that have a beveled sides across the thickness of the belt. When the first and second ends are interlocked the bevel points are adjacent one another and a substantially V-shaped channel is formed. An adhesive is disposed in that channel. The V-shaped channel beneficially continuously extends along the puzzle-cut seam.
摘要:
Imageable seamed intermediate transfer belts having a large seam surface area, and marking machines that use such imageable seamed intermediate transfer belts. The seamed intermediate transfer belt having an inner surface and an outer surface having predefine surface properties for the purpose of imaging. A belt is formed from a semiconductive substrate having a first end and a second end that are mated to form a seam. An adhesive is disposed over the joint whereupon joint can be burnished or overcoated with a material that substantially imitate predefined surface properties of the belt.
摘要:
Seamed belts, particularly puzzle-cut imageable seam intermediate transfer belts, that have large seam surface areas and puzzle-cut tabs that are resistant to lifting away from the seam. Belts include a substrate having a puzzle-cut first end and a puzzle-cut second end that are interlocked together to form a seam having a kerf. The first end includes a first step and the second end includes a second step. When the ends are interlocked the first step and the second step form a channel. An adhesive is disposed in the channel. The resulting channel beneficially continuously extends along the puzzle-cut seam. When the belt is an imageable seam intermediate transfer belt the substrate takes the form of a semiconductive substrate. Such imageable seam intermediate transfer belts find use in electrophotographic marking machines.
摘要:
There is disclosed an electrical component having at least one end for making electrical contact with another component, including a plurality of electrically conductive fibers in a matrix to provide a plurality of electrical point contacts at the at least one end of the electrical component, wherein the matrix is prepared from a composition composed of methyl methacrylate monomer and a trimer of hydroxyethyl methacrylate, diphenylmethane diisocyanate, and hydroxyethyl methacrylate, wherein the electrical component has a laser processed region at least substantially free of the matrix, wherein there is minimal residue generated by the laser processing in removing the matrix from the laser processed region.
摘要:
A device for neutralizing static electric charge on a surface comprising a support means, a plurality of resilient, flexible thin fibers having an electrical resistivity of from about 2.times.10.sup.3 ohm-cm to about 1.times.10.sup.6 ohm-cm., the fibers being supported by the support means in such manner that the fibers are oriented and extend in a uniform direction, in a brush like configuration from the support means so that the distal ends of the fibers may extend toward a surface which has a static charge which one wishes to neutralize. Preferably, the resilient fibers have a resistivity of from about 4.times.10.sup.4 ohm-cm. to about 4.times.10.sup.5 ohm-cm., and are arranged in a linear array of spaced discrete bundles of fibers in a conductive potting composition in the support holder. Preferably the fibers are made of a partially carbonized polyacrylonitrile fiber and the device may be used in an electrostatographic reproducing machine having at least one dicorotron charging device.
摘要:
A method for making conductive brushes which comprises providing a rotatable cylindrical mandrel having a plurality of longitudinal recesses on its surface, and winding electrically conductive fibers from a supply around the mandrel by rotating the mandrel. The brush backing or base may be formed by a number of methods utilizing the recesses on the surface of the mandrel. In one embodiment, the brush backing is formed by placing a strip of a conductive material in each of the recesses, and after the conductive fibers have been wound thereover, the conductive fiber windings are caused to adhere to each other by adhesive means and another strip of conductive material is placed over the windings to mate with the strip in the recess to form the backing for the conductive brush. Individual conductive brushes are obtained by cutting the conductive fibers in the longitudinal direction of the mandrel. Other embodiments of the method for producing the backing or base of the conductive brushes, including one embodiment in which a mandrel without recesses is used, are also disclosed.
摘要:
Disclosed herein is an electrical component comprising a segment having a diameter in the range of about 1 micrometers to about 10 cm, the segment comprising a plurality of non-metallic, resistive fibers in a non-metallic binder. The segment is precisely trimmed to impart to the segment an electrical resistance within 1% of the desired resistance value. A manufacturing system and methods of manufacturing components having precise specifications also are disclosed.
摘要:
An electrical component including a substrate comprising an electroconductive filler in a first polymeric binder, and a coating layer adhered to at least a portion of the substrate surface, the coating layer comprising a nanostructured electroconductive particulate dispersed in a polymeric binder, such as an epoxy resin. A method of making the component also is described.
摘要:
A charging device comprises first and second electrodes forming a charging zone. A plurality of nanostructures adhere to at least one of the first and second electrodes. A charging voltage supply couples to the electrodes to support the formation of gaseous ions in the charging zone. An aperture electrode or grid proximate to the first and second electrodes is coupled to a grid control voltage supply which grid control voltage supply, in turn, controls a flow of gaseous ions from the charging zone to thereby charge a proximately-located receptor. In one embodiment, the charging voltage supply is arranged to provide a pulsed-voltage waveform. In one variation of this embodiment, the pulsed-voltage waveform comprises a pulsed-DC waveform. In another embodiment, the charging voltage supply is arranged to provide an alternating-current waveform. In one embodiment, the charging device itself is comprised in an image forming device.
摘要:
A charging device comprises first and second electrodes forming a charging zone. A plurality of nanostructures adhere to at least one of the first and second electrodes. A charging voltage supply couples to the electrodes to support the formation of gaseous ions in the charging zone. An aperture electrode or grid proximate to the first and second electrodes is coupled to a grid control voltage supply which grid control voltage supply, in turn, controls a flow of gaseous ions from the charging zone to thereby charge a proximately-located receptor. In one embodiment, the charging voltage supply is arranged to provide a pulsed-voltage waveform. In one variation of this embodiment, the pulsed-voltage waveform comprises a pulsed-DC waveform. In another embodiment, the charging voltage supply is arranged to provide an alternating-current waveform. In one embodiment, the charging device itself is comprised in an image forming device.