Abstract:
Embodiments of catalyst systems and methods of synthesizing catalyst systems are provided. The catalyst system may include a core comprising a zeolite; and a shell comprising a microporous fibrous silica. The shell may be in direct contact with at least a majority of an outer surface of the core. The catalyst system may have a Si/Al molar ratio greater than 5. At least a portion of the shell may have a thickness of from 50 nanometers (nm) to 360 nm.
Abstract:
According to one or more embodiments, cationic polymers may be produced which include one or more monomers containing cations. Such cationic polymers may be utilized as structure directing agents to for mesoporous zeolites. The mesoporous zeolites may include micropores as well as mesopores, and may have a surface area of greater than 350 m2/g and a pore volume of greater than 0.3 cm3/g. Also described are core/shell zeolites, where at least the shell portion includes a mesoporous zeolite material.
Abstract:
According to one or more embodiments, cationic polymers may be produced which include one or more monomers containing cations. Such cationic polymers may be utilized as structure directing agents to form mesoporous zeolites. The mesoporous zeolites may include micropores as well as mesopores, and may have a surface area of greater than 350 m2/g and a pore volume of greater than 0.3 cm3/g. Also described are core/shell zeolites, where at least the shell portion includes a mesoporous zeolite material.
Abstract:
According to one or more embodiments, cationic polymers may be produced which include one or more monomers containing cations. Such cationic polymers may be utilized as structure directing agents to form mesoporous zeolites. The mesoporous zeolites may include micropores as well as mesopores, and may have a surface area of greater than 350 m2/g and a pore volume of greater than 0.3 cm3/g. Also described are core/shell zeolites, where at least the shell portion includes a mesoporous zeolite material.
Abstract:
According to one or more embodiments, cationic polymers may be produced which include one or more monomers containing cations. Such cationic polymers may be utilized as structure directing agents to form mesoporous zeolites. The mesoporous zeolites may include micropores as well as mesopores, and may have a surface area of greater than 350 m2/g and a pore volume of greater than 0.3 cm3/g. Also described are core/shell zeolites, where at least the shell portion includes a mesoporous zeolite material.
Abstract:
Embodiments of the present disclosure provide for NiPt nanoparticles, compositions and supports including NiPt nanoparticles, methods of making NiPt nanoparticles, methods of supporting NiPt nanoparticles, methods of using NiPt nanoparticles, and the like.
Abstract:
Embodiments of catalyst systems and methods of synthesizing catalyst systems are provided. The catalyst system may include a core comprising a zeolite; and a shell comprising a microporous fibrous silica. The shell may be in direct contact with at least a majority of an outer surface of the core. The catalyst system may have a Si/Al molar ratio greater than 5. At least a portion of the shell may have a thickness of from 50 nanometers (nm) to 360 nm.
Abstract:
According to one or more embodiments, cationic polymers may be produced which include one or more monomers containing cations. Such cationic polymers may be utilized as structure directing agents to for mesoporous zeolites. The mesoporous zeolites may include micropores as well as mesopores, and may have a surface area of greater than 350 m2/g and a pore volume of greater than 0.3 cm3/g. Also described are core/shell zeolites, where at least the shell portion includes a mesoporous zeolite material.
Abstract:
Embodiments of the present disclosure provide for supported Ni/Pt bimetallic nanoparticles having a Ni core and a Pt layer disposed on the surface of the Ni core, compositions including supported NiPt nanoparticles, methods of making supported NiPt nanoparticles, methods of using supported NiPt nanoparticles, and the like.
Abstract:
Embodiments of the present disclosure also provide for a supported fused Fe catalyst, a method of making the supported fused Fe catalyst, methods of hydrocarbon decomposition, and the like.