摘要:
A semiconductor, and manufacturing method therefor, is provided with a barrier/adhesion layer, having cobalt, nickel, or palladium for semiconductors having conductive materials of copper, silver or gold. The barrier/adhesion layer can be alloyed with between about 0.2% and 4% tantalum, molybdenum, or tungsten to increase barrier effectiveness and lower resistivity.
摘要:
A method and apparatus for forming a reliable and cost efficient battery or electrochemical capacitor electrode structure that has an improved lifetime, lower production costs, and improved process performance are provided. In one embodiment a method for forming a three dimensional porous electrode for a battery or an electrochemical cell is provided. The method comprises depositing a columnar metal layer over a substrate at a first current density by a diffusion limited deposition process and depositing three dimensional metal porous dendritic structures over the columnar metal layer at a second current density greater than the first current density.
摘要:
A method for forming a battery from via thin-film deposition processes is disclosed. A mesoporous carbon material is deposited onto a surface of a conductive substrate that has high surface area, conductive micro-structures formed thereon. A porous, dielectric separator layer is then deposited on the layer of mesoporous carbon material to form a half cell of an energy storage device. The mesoporous carbon material is made up of CVD-deposited carbon fullerene “onions” and carbon nano-tubes, and has a high porosity capable of retaining lithium ions in concentrations useful for storing significant quantities of electrical energy. Embodiments of the invention further provide for the formation of an electrode having a high surface area conductive region that is useful in a battery structure. In one configuration the electrode has a high surface area conductive region comprising a porous dendritic structure that can be formed by electroplating, physical vapor deposition, chemical vapor deposition, thermal spraying, and/or electroless plating techniques.
摘要:
In one embodiment, an apparatus for simultaneously depositing an anodically or cathodically active material on opposing sides of a flexible conductive substrate is provided. The apparatus comprises a chamber body defining one or more processing regions in which a flexible conductive substrate is exposed to a dual sided spray deposition process, wherein each of the one or more processing regions are further divided into a first spray deposition region and a second spray deposition region for simultaneously spraying an anodically active or cathodically active material onto opposing sides of a portion of the flexible conductive substrate, wherein each of the first and second spray deposition regions comprise a spray dispenser cartridge for delivering the activated material toward the flexible conductive substrate and a movable collection shutter.
摘要:
Embodiments of the present invention generally relate to lithium-ion batteries, and more specifically, to a system and method for fabricating such batteries using thin-film processes that form three-dimensional structures. In one embodiment, an anodic structure used to form an energy storage device is provided. The anodic structure comprises a flexible conductive substrate, a plurality of conductive microstructures formed on the conductive substrate, comprising a plurality of columnar projections and dendritic structures formed over the plurality of columnar projections and a plurality of tin particles formed on the plurality of conductive microstructures. In another embodiment, the anodic structure further comprises a tin nucleation layer comprising tin particles formed on the flexible conductive substrate between the flexible conductive substrate and the plurality of conductive microstructures.
摘要:
A method for forming a battery from via thin-film deposition processes is disclosed. A mesoporous carbon material is deposited onto a surface of a conductive substrate that has high surface area, conductive micro-structures formed thereon. A porous, dielectric separator layer is then deposited on the layer of mesoporous carbon material to form a half cell of an energy storage device. The mesoporous carbon material is made up of CVD-deposited carbon fullerene “onions” and carbon nano-tubes, and has a high porosity capable of retaining lithium ions in concentrations useful for storing significant quantities of electrical energy. Embodiments of the invention further provide for the formation of an electrode having a high surface area conductive region that is useful in a battery structure. In one configuration the electrode has a high surface area conductive region comprising a porous dendritic structure that can be formed by electroplating, physical vapor deposition, chemical vapor deposition, thermal spraying, and/or electroless plating techniques.
摘要:
An integrated circuit and a method of manufacturing an integrated circuit is provided including providing an integrated circuit having a trench and via provided in a dielectric layer. A nano-electrode-array is formed over the dielectric layer in the trench and via, and a conductor is deposited over the nano-electrode-array. The conductor and the nano-electrode-array are coplanar with a surface of the dielectric layer.
摘要:
A method of fabricating an integrated circuit can include forming a barrier material layer along lateral side walls and a bottom of a via aperture which is configured to receive a via material that electrically connects a first conductive layer and a second conductive layer, implanting a first alloy element into an interfacial layer over the barrier material layer, depositing an alloy layer over the interfacial layer. The implanted first alloy element is reactive with the barrier material layer to increase resistance to copper diffusion.
摘要:
The present invention provides systems and methods that facilitate formation of semiconductor devices via planarization processes. The present invention utilizes dishing effects that typically occur during a chemical mechanical planarization (CMP) process. A reducing CMP process is performed on a semiconductor device in order to form a passive layer instead of performing a first CMP, followed by a deposition and a second CMP to form a passive layer. The reducing CMP process utilizes a slurry that includes a reducing chemistry that forms the passive layer in a dish region of an electrode. Thus, the passive layer is formed in conjunction with the reducing CMP process utilized for forming the electrode.
摘要:
A method of implanting copper barrier material to improve electrical performance in an integrated circuit fabrication process can include providing a copper layer over an integrated circuit substrate, providing a barrier material at a bottom and sides of a via positioned over the copper layer to form a barrier material layer separating the via from the copper layer, implanting a metal species into the barrier material layer, and providing a conductive layer over the via such that the via electrically connects the conductive layer to the copper layer. The implanted metal species can make the barrier material layer more resistant to copper diffusion from the copper layer.