摘要:
A honeycomb-shaped substrate for catalyst is made from ceramic, has a straight-flow structure, and includes cellular walls exhibiting pore volumes, which differ partially, and a large number of cellular passages demarcated by the cellular walls. A catalyst for purifying exhaust gases is produced by providing the cellular walls of the honeycomb-shaped substrate with a catalytic coating layer.
摘要:
A catalyst for purifying an exhaust gas comprising a zeolite catalyst ion exchanged with cobalt and at least one alkaline earth metal and a zeolite catalyst ion-exchanged with copper, provided on an inlet side of an exhaust gas stream and an outlet side of the exhaust gas respectively, or randomly present in a mixed state.
摘要:
A hexagonal cell honeycomb structure body has a plurality of hexagonal cells. Each hexagonal cell is surrounded by six cell walls in a hexagonal lattice shape. A R-shaped corner part of an approximate circular-arc shape is alternately formed at interior angle parts of the six cell walls forming each hexagonal cell. The three R-shaped corner parts are at the alternate internal corners of each hexagonal cell observed from a cross section of the axis direction of the hexagonal cell honeycomb structure body. A radius of curvature of each R-shaped corner part is larger than that of the interior corner part having no R-shaped corner part. The minimum radius of curvature of the R-shaped corner part is 2.8 to 5 times of a thickness of each hexagonal cell wall, namely within a range of 0.25 mm to 0.45 mm.
摘要:
There is provided a desulphurization apparatus to be mounted in automobiles, which is arranged between a fuel tank and an injector of an engine, the apparatus comprising a combination of a sulfur-containing compound adsorbent for adsorbing and concentrating the sulfur-containing compound and a sulfur-containing compound oxidizing agent or oxidation catalyst for oxidizing the adsorbed sulfur-containing compound, the apparatus further comprising a means for recovering and removing the resulting sulfur-containing oxide. According to this apparatus, the quantity of the particulate matter in an exhaust gas is reduced by half and the durability of the catalyst for removing a nitrogen oxide is improved by a factor of about two.
摘要:
The present invention is a method of solidifying sulfur component being the cause of “SOx poisoning” by use of a sulfur solidifier. The solidifier includes a metal element having a function of oxidizing the sulfur component and a basic metal element. And the solidifier solidifies sulfur component before exhaust gas flows into an NOx-occluding reduction-type exhaust purifying catalyst located on an exhaust path. Since the foregoing sulfur solidifier includes the above metal element and the basic metal element, it can effectively solidify the sulfur component which are the cause of the SOx poisoning, and ensure improvement in purification performance.
摘要:
An exhaust gas purifying device for an engine comprises an exhaust gas purifying catalyst arranged in the exhaust passage. The catalyst is capable of reducing NO.sub.X in the catalyst in the oxidizing atmosphere, and comprises a reducing agent adsorbent adsorbing a reducing agent in the inflowing exhaust gas therein when the pressure in the adsorbent becomes higher, and desorbing the adsorbed reducing agent therefrom when the pressure in the adsorbent becomes lower. An exhaust gas control valve is disposed in the exhaust passage downstream of the catalyst. When both the engine load and the engine speed are low, the opening of the valve is made smaller to increase the pressure in the catalyst. At this time, hydrocarbon is fed to the catalyst, and is then adsorbed in the catalyst. When the engine load or the engine speed becomes high, or the cumulative amount of hydrocarbon fed to the catalyst becomes larger than a predetermined amount, the valve is made fully open to reduce the pressure in the catalyst. At this time, the adsorbed hydrocarbon is desorbed from the catalyst, and then reduces NO.sub.X in the catalyst.
摘要:
According to the present invention, SO.sub.X in the exhaust gas of an internal combustion engine is absorbed by a sulfate absorbent which absorbs SO.sub.X in the exhaust gas when the temperature is lower than a releasing temperature and releases the absorbed SO.sub.X when the temperature becomes higher than the releasing temperature. When the exhaust gas temperature increases during the operation of the engine and reaches the releasing temperature, the temperature of the exhaust gas flowing into the sulfate absorbent is further raised to a predetermined temperature by supplying fuel to the exhaust gas passage upstream of the sulfate absorbent. The ratio of SO.sub.3 in the SO.sub.X mixture released from the sulfate absorbent changes in accordance with the temperature, and takes the highest value at a certain temperature (i.e., a peak temperature). Therefore, when the exhaust gas temperature is raised above the peak temperature, the ratio of SO.sub.3 in the SO.sub.X mixture released from the sulfate absorbent decreases as the temperature increases. In the present invention, the above-noted predetermined temperature is selected in such a manner that the ratio of SO.sub.3 at this predetermined temperature becomes lower than the ratio of SO.sub.3 at the releasing temperature. Therefore, when SO.sub.X is released from the sulfate absorbent, the amount of SO.sub.3, i.e., the amount of particulate matter released into the atmosphere can be maintained at a low level.