Abstract:
Provided are a saturable absorber including at least one material selected from a group of MXenes, and a Q-switching and mode-locked pulsed laser system using the same.
Abstract:
Disclosed herein is a single pulse laser apparatus that includes: a resonator having a first mirror, a second mirror, a gain medium, an electro-optic modulator (EOM) configured to perform single pulse switching, and an acousto-optic modulator (AOM) configured to perform mode-locking; a photodiode configured to measure a laser beam oscillated in the resonator; a synchronizer configured to convert an electrical signal, which is generated by measuring the laser beam, into a transistor-transistor logic (TTL) signal; a delay unit configured to set a delay time for the TTL signal to synchronize the EOM and the AOM and output a trigger TTL signal according to the delay time; an AOM driver configured to input the trigger TTL signal to the AOM that performs mode-locking and drive the AOM; and an EOM driver configured to input the trigger TTL signal to the EOM that performs single pulse switching and drive the EOM.
Abstract:
There are provided a fabricating method of a carbon nanotube-based field effect transistor having an improved binding force with a substrate and a carbon nanotube-based field effect transistor fabricated by the fabricating method. The method includes forming an oxide film on a substrate, forming a photoresist pattern on the oxide film, forming a metal film on the entire surface of the oxide film having the photoresist pattern, removing the photoresist by lifting off, adsorbing carbon nanotubes on the substrate from which the photoresist is removed, performing an annealing process to the substrate to which the carbon nanotubes are adsorbed, and removing the metal film. Since an adhesive strength between a substrate and carbon nanotubes increases, stability and reliability of a field effect transistor can be improved. If the field effect transistor is applied to a liquid sensor or the like, a lifespan of the sensor can be extended and reliability of a measurement result obtained by the sensor can be improved.
Abstract:
The present invention provides a chalcogenide phase-change material represented by the following Chemical Formula 1, and a memory device including the same. Ma(AxSbyTe(1-x-y))b [Chemical Formula 1] In Chemical Formula 1, M denotes an element having a doping formation energy ΔEf in a range of −3 eV/atom to 0.5 eV/atom, A denotes indium (In) or germanium (Ge), a and b are each positive numbers and selected to satisfy a+b=1, x ranges from 0.15 to 0.3, and y ranges from 0.05 to 0.25.
Abstract:
Disclosed is a system for observing the conformational change in a protein, which includes a sensing element which is configured to amplify an electromagnetic wave of a specific frequency; a light irradiation unit which is configured to irradiate a photoreceptor protein solution coated on the sensing element with light; an electromagnetic wave irradiation unit which allows an electromagnetic wave to be incident in a direction perpendicular to the bottom surface of the sensing element; a detection unit which is configured to detect an electromagnetic wave reflected from the bottom surface of the sensing element; and a control unit which is configured to observe the conformational change in the photoreceptor protein based on the detected electromagnetic wave.
Abstract:
Disclosed is an apparatus for graphene wet transfer, which includes: a reservoir body having at least two reservoirs; a barrier structure located on the reservoir and having at least one separated space formed by barriers; and a substrate frame located below the barrier structure and having at least one substrate accommodation groove for accommodating a target substrate to which graphene is transferred. Here, each reservoir may be filled with a solution for a wet transfer process, and the graphene may be separately located in each separated space in a floating state in the solution.
Abstract:
The present invention relates to a terahertz (THz) wave detecting sensor including a MXene material represented by the following Formula 1 as a sensing material: M(n+1)Xn, [Formula 1] wherein, in Formula 1, M is at least one transition metal selected from early transition metal elements, X is at least one selected from C and N, and n is an integer selected from 1 to 3.
Abstract:
A system for adjusting transmittance, according to the present disclosure, includes a sensing device configured to amplify electromagnetic waves of a specific frequency and a squeegee configured to concentrate a target material inside a slot formed in the sensing device. A transmittance of the sensing device is adjusted according to concentration of the target material concentrated inside the slot by the squeegee.
Abstract:
Provided are a method of fabricating a 3-dimensional transistor sensor and the sensor and a sensor array thereof. The method of fabricating the 3-dimensional transistor sensor includes forming an insulating layer on a silicon substrate, forming a silicon layer on the insulating layer and forming a 3-dimensional silicon fin by etching the silicon layer, forming a source area and a source electrode at one end of the silicon fin, forming a drain area and a drain electrode at the other end the silicon fin, and forming a gate area at a center of the silicon fin, surrounding three surfaces of a gate with a gate insulating layer, forming a sensing gate layer configured to surround a portion of the gate insulating layer, and sealing an upper portion of the gate insulating layer excluding the sensing gate layer.
Abstract:
Disclosed herein is a single pulse laser apparatus which includes a first mirror and a second mirror disposed at both ends of the single pulse laser apparatus and having reflectivities of a predetermined level or more; a gain medium rotated at a predetermined angle and configured to oscillate a laser beam in a manual mode-locking state; a linear polarizer configured to output a beam having a specific polarized component of the oscillated laser beam; an etalon configured to adjust a pulse width of the oscillated laser beam; and an electro-optic modulator configured to perform Q-switching and single pulse switching.