Abstract:
Provided is a method of fabricating a semiconductor device including the following steps. A substrate is provided. A material layer having an opening is formed on the substrate. A first passivation material layer is formed on sidewalls of the opening and on the substrate. A treatment process is performed to the first passivation material layer to form a second passivation material layer. A first surface of the second passivation material layer and a second surface (at an inner side) of the second passivation material layer are differ in a property, and the first surface is located at a side of the second passivation material layer relatively away from the material layer.
Abstract:
Present example embodiments relate generally to semiconductor devices and methods of fabricating a semiconductor device comprising providing a substrate and forming a plurality of layers over the substrate. The plurality of layers comprise alternating first composition material layers and second composition material layers. The method further comprises forming an elongated post. The post extends from at least the top surface of the substrate.
Abstract:
Provided is a memory device including a plurality of first conductive line layers, a plurality of support structures, and a charge storage layer. Each of the first conductive line layers extends along a plane defined by a first direction and a second direction. Each of the first conductive line layers includes a plurality of first conductive lines extending along the first direction. The support structures are located between the adjacent first conductive line layers. The charge storage layer covers upper surfaces, lower surfaces, and two side surfaces of the first conductive lines and surfaces of the support structures.
Abstract:
Provided is a memory device including a plurality of first conductive line layers, a plurality of support structures, and a charge storage layer. Each of the first conductive line layers extends along a plane defined by a first direction and a second direction. Each of the first conductive line layers includes a plurality of first conductive lines extending along the first direction. The support structures are located between the adjacent first conductive line layers. The charge storage layer covers upper surfaces, lower surfaces, and two side surfaces of the first conductive lines and surfaces of the support structures.
Abstract:
Provided is a memory device including a plurality of bit line layers and a plurality of supporting structures. Each bit line layer extends in a plane defined by a first direction and a second direction and has a plurality of bit lines extending along the first direction. Each bit line has a plurality of wide parts and a plurality of narrow parts arranged alternately. The supporting structures are disposed between the wide parts of the corresponding bit lines of adjacent bit line layers. Besides, each narrow part of each bit line substantially has an ellipse-like shape in cross section, and each narrow part has a rounding ratio (RR) of greater than about 30%.
Abstract:
A method is described that facilitates inter-layer dielectric fill-in among transistors in a densely-configured array of an integrated circuit. An etch process that exploits a micro-loading effect to create a T-shaped profile between transistors is disclosed. The micro-loading has a negligible effect on transistors in a peripheral region of the integrated circuit.