Abstract:
An apparatus, system, and method for controlling data transfer to an output port of a serial data link interface in a semiconductor memory is disclosed. In one example, a flash memory device may have multiple serial data links, multiple memory banks and control input ports that enable the memory device to transfer the serial data to a serial data output port of the memory device. In another example, a flash memory device may have a single serial data link, a single memory bank, a serial data input port, a control input port for receiving output enable signals. The flash memory devices may be cascaded in a daisy-chain configuration using echo signal lines to serially communicate between memory devices.
Abstract:
A flash memory device having at least one bank, where the each bank has an independently configurable page size. Each bank includes at least two memory planes having corresponding page buffers, where any number and combination of the memory planes are selectively accessed at the same time in response to configuration data and address data. The configuration data can be loaded into the memory device upon power up for a static page configuration of the bank, or the configuration data can be received with each command to allow for dynamic page configuration of the bank. By selectively adjusting a page size the memory bank, the block size is correspondingly adjusted.
Abstract:
A Multiple-bit per Cell (MBC) non-volatile memory apparatus, method, and system wherein a controller for writing/reading data to/from a memory array controls polarity of data by selectively inverting data words to maximize a number of bits to be programmed within (M−1) virtual pages and selectively inverts data words to minimize a number of bits to be programmed in an Mth virtual page where M is the number of bits per cell. A corresponding polarity control flag is set when a data word is inverted. Data is selectively inverted according the corresponding polarity flag when being read from the M virtual pages. A number of the highest threshold voltage programming states in reduced. This provides tighter distribution of programmed cell threshold voltage, reduced power consumption, reduced programming time, and enhanced device reliability.
Abstract:
A memory device includes core memory such as flash memory for storing data. The memory device includes a first power input to receive a first voltage used to power the flash memory. Additionally, the memory device includes a second power input to receive a second voltage. The memory device includes power management circuitry configured to receive the second voltage and derive one or more internal voltages. The power management circuitry supplies or conveys the internal voltages to the flash memory. The different internal voltages generated by the power management circuitry (e.g., voltage converter circuit) and supplied to the core memory enable operations such as read/program/erase with respect to cells in the core memory.
Abstract:
A memory device includes core memory such as flash memory for storing data. The memory device includes a first power input to receive a first voltage used to power the flash memory. Additionally, the memory device includes a second power input to receive a second voltage. The memory device includes power management circuitry configured to receive the second voltage and derive one or more internal voltages. The power management circuitry supplies or conveys the internal voltages to the flash memory. The different internal voltages generated by the power management circuitry (e.g., voltage converter circuit) and supplied to the core memory enable operations such as read/program/erase with respect to cells in the core memory.
Abstract:
A solid state drive is disclosed. The solid state drive includes a circuit board having opposing first and second surfaces. A plurality of semiconductor chips are attached to the first surface of the circuit board of the solid state drive, and the plurality of semiconductor chips of the solid state drive include at least one memory chip that is at least substantially encapsulated in a resin. An in-line memory module-type form factor circuit board is also disclosed. The in-line memory module-type form factor circuit board has opposing first and second surfaces. A plurality of semiconductor chips are attached to the first surface of the in-line memory module-type form factor circuit board, and these semiconductor chips include at least one memory chip that is at least substantially encapsulated in a resin.
Abstract:
A Phase-Change Memory (PCM) apparatus including a data field for storing a data bits representing a data value or an inversion of the data value and a polarity field for storing a plurality of polarity bits for indicating that the data bits stored in the data field represent the data value or the inversion of the data value. In one embodiment an odd number of set polarity bits indicates that the data bits represent the inversion of the data value and an even number of set polarity bits indicates that the data bits represent the data value. The PCM apparatus has enhanced endurance and improved error tolerance.
Abstract:
A solid state drive is disclosed. The solid state drive includes a circuit board having opposing first and second surfaces. A plurality of semiconductor chips are attached to the first surface of the circuit board of the solid state drive, and the plurality of semiconductor chips of the solid state drive include at least one memory chip that is at least substantially encapsulated in a resin. An in-line memory module-type form factor circuit board is also disclosed. The in-line memory module-type form factor circuit board has opposing first and second surfaces. A plurality of semiconductor chips are attached to the first surface of the in-line memory module-type form factor circuit board, and these semiconductor chips include at least one memory chip that is at least substantially encapsulated in a resin.
Abstract:
A dual function memory device architecture compatible with asynchronous operation and synchronous serial operation. The dual function memory device architecture includes one set of physical ports having two different functional assignments. Coupled between the physical ports and core circuits of the memory device are asynchronous and synchronous input and output signal paths or circuits. The signal paths include shared or dedicated buffers coupled to the ports, asynchronous and synchronous command decoders, a network of switches, and a mode detector. The mode detector determines the operating mode of the dual function memory device from a port, and provides the appropriate switch selection signal. The network of switches routes the input or output signals through the asynchronous or synchronous circuits in response to the switch selection signal. The appropriate command decoder interprets the input signals and provides common control logic with the necessary signals for initiating the corresponding operation.
Abstract:
A threshold voltage distribution scheme for multi-level Flash cells where an erase threshold voltage and at least one programmed threshold voltage lie in an erase voltage domain. Having at least one programmed threshold voltage in the erase voltage domain reduces the Vread voltage level to minimize read disturb effects, while extending the life span of the multi-level Flash cells as the threshold voltage distance between programmed states is maximized. The erase voltage domain can be less than 0V while a program voltage domain is greater than 0V. Accordingly, circuits for program verifying and reading multi-level Flash cells having a programmed threshold voltage in the erase voltage domain and the program voltage domain use negative and positive high voltages.