Abstract:
A semiconductor structure and a manufacturing method for the same are provided. The method includes following steps. A first gate structure is formed on a substrate in a first region. A protecting layer is formed covering the first gate structure. A second gate structure is formed on the substrate in second region exposed by the protecting layer and adjacent to the first region.
Abstract:
A semiconductor structure and a method for forming the same are provided. The semiconductor structure includes a substrate, a stacked structure, a dielectric layer, a conductive structure, a dielectric structure and a conductive plug. The stacked structure includes dielectric films and conductive films arranged alternately. The dielectric layer is between the conductive structure and a sidewall of the stacked structure. The dielectric structure is on the stacked structure and defining a through via. The conductive plug fills the through via and physically contacts one of the conductive films exposed by the through via and adjoined with the dielectric layer.
Abstract:
A semiconductor device includes active strips. Active strip stack selection structures electrically couple to the active strip stacks at positions between the first and second ends, and select particular ones of the active strip stacks for operations. In one embodiment, different pads coupled to opposite pads have a higher voltage, depending on the memory cell selected for read. The same active strip stack selection structure can act as a pair of side gates for opposite sides of a first active strip stack, and as one side gate for each of the adjacent active strip stacks. Each active strip stack can have: a first structure from a first set acting as first and second side gates on a first side of word lines; and a second structure and a third structure from a second set respectively acting as third and fourth side gates on the second side of word lines.
Abstract:
A 3D AND flash memory device includes a gate stack structure, a channel stack structure, a source pillar and a drain pillar, and a plurality of charge storage structures. The gate stack structure is located on the dielectric substrate. The gate stack structure includes a plurality of gate layers and a plurality of insulating layers stacked alternately with each other. The channel stack structure extends through the gate stack structure. The channel stack structure includes a plurality of channel rings spaced apart from each other. The source pillar and the drain pillar are located in the channel stack structure and are respectively electrically connected to the plurality of channel rings. The plurality of charge storage structures are located between the plurality of gate layers and the plurality of channel rings.
Abstract:
Provided is a memory device including a substrate, a stack structure, a polysilicon layer, a vertical channel structure, and a charge storage structure. The stack structure is disposed on the substrate. The stack structure includes a plurality of dielectric layers and a plurality of conductive layers stacked alternately. The polysilicon layer is disposed between the substrate and the stack structure. The vertical channel structure penetrates through the stack structure and the polysilicon layer. The charge storage structure is at least disposed between the vertical channel structure and the plurality of conductive layers.
Abstract:
A semiconductor device includes a stack and a plurality of memory strings. The stack is formed on a substrate, and the stack includes conductive layers and insulating layers alternately stacked. The memory strings penetrate the stack along a first direction. Each of the memory strings includes a first conductive pillar, a second conductive pillar, a channel layer and a memory structure. The first conductive pillar and the second conductive pillar extend along the first direction, respectively, and electrically isolated to each other. The channel layer extends along the first direction. The channel layer is disposed between the first conductive pillar and the second conductive pillar, and the channel layer is coupled to the first conductive pillar and the second conductive pillar. The memory structure surrounds the first conductive pillar, the second conductive pillar and the channel layer.
Abstract:
The present disclosure provides a three-dimensional memory device and a method for manufacturing the same. The three-dimensional memory device includes a plurality of tiles, and each tiles includes a plurality of blocks, and each blocks includes a gate stacked structure, a conductive layer, first ring-shaped channel pillars, source/drain pillars, and charge storage structures. The gate stacked structure is disposed on the substrate and includes gate layers electrically insulated from each other. The conductive layer is disposed between the substrate and the gate stacked structure. The first ring-shaped channel pillars are disposed on the substrate and located in the gate stacked structure. The source/drain pillars are disposed on the substrate, and each of the first ring-shaped channel pillars are configured with two source/drain pillars disposed therein. Each of the charge storage structures is disposed between the corresponding gate layer and the corresponding first ring-shaped channel pillar. The conductive layer in one of the tiles is isolated from the conductive layers in the other tiles.
Abstract:
A three-dimensional (3D) stacked semiconductor structure is provided. A substrate having an array area and a peripheral area is provided, and several patterned multi-layered stacks above the substrate are formed in the array area. The patterned multi-layered stacks are spaced apart from each other, and channel holes are formed between the patterned multi-layered stacks disposed adjacently. A charge trapping layer is formed on the patterned multi-layered stacks and deposited in the channel holes as liners. A polysilicon channel layer is deposited along the charge trapping layer, and conductive pads are formed on the polysilicon channel layer and respectively corresponding to the patterned multi-layered stacks. The polysilicon channel layer has a first thickness (t1), one of the conductive pads has a second thickness (t2), wherein the second thickness (t2) is larger than the first thickness (t1).
Abstract:
A 3D memory device includes a multi-layer stack, a first contact layer, a memory layer, a cannel layer. The multi-layer stack includes a plurality of conductive layers, a first opening and a second opening. The conductive layers are vertical stacked and insulated with each other. The first opening and the second opening respectively penetrate through at least two adjacent ones of the conductive layers. The first contact layer is disposed in the first opening and electrically connecting the conductive layers penetrated by the first opening. The memory layer is disposed in the second opening. The channel layer covers on the memory layer, wherein a plurality of memory cells are formed at cross points of the channel layer, the memory layer and the conductive layers penetrated by the second opening.
Abstract:
A method for manufacturing a memory device, which can be configured as a 3D NAND flash memory, and includes a plurality of stacks of conductive strips, including even stacks and odd stacks having sidewalls. Some of the conductive strips in the stacks are configured as word lines. Data storage structures are disposed on the sidewalls of the even and odd stacks. Active pillars between corresponding even and odd stacks of conductive strips include even and odd semiconductor films connected at the bottom of the trench between the stacks, and have outside surfaces and inside surfaces. The outside surfaces contact the data storage structures on the sidewalls of the corresponding even and odd stacks forming a 3D array of memory cells; the inside surfaces are separated by an insulating structure that can include a gap. The semiconductor films can be thin-films having a U-shaped current path.