Abstract:
A mechanism is described for accommodating variations in the read or write window which are caused by variations in the number of half-selected cells which are in each logic state and share an access line with the target cell. Roughly described, leakage current is detected on the access line in one segment of the read or write operation, and read or write current detected or generated in a second segment of the operation is adjusted to compensate for the detected leakage current. The first segment can be omitted in subsequent read or write operations if the target cell word line address has not changed and the leakage-tracked reference value has not become invalid for other reasons.
Abstract:
A memory configured to have data read therefrom is provided. The memory includes a data port including B transmitters disposed in parallel and for transferring data on both rising and falling edges of a clock, a first memory including a first data bus including N lines on which N bits can be transferred, and a second memory including a second data bus including N lines on which N bits can be transferred. The memory includes a data path controller including a data distributor disposed between the first and second memories and being connected to the data port, wherein, on the rising edge, the data distributor distributes a first data segment comprised of B bits from the first data bus to the data port and, on the falling edge, the data distributor distributes a second data segment comprised of B bits from the second data bus to the data port.
Abstract:
A memory array and structure are provided. The array includes driving elements arranged in array; memory cells arranged in array and respectively corresponding to the driving elements, where one end of each memory cell is coupled to a first end of the corresponding driving element; word lines and bit lines arranged to intersect with each other, where each word lines is coupled to control ends of the driving elements in the same word line, and each bit line is respectively coupled to the other ends of the memory cells. For each word line, the first end of one driving element is connected to the first end of at least one other driving element in the same word line by a metal line, so as to form share driving elements.
Abstract:
A mechanism is described for accommodating variations in the read or write window which are caused by variations in the number of half-selected cells which are in each logic state and share an access line with the target cell. Roughly described, leakage current is detected on the access line in one segment of the read or write operation, and read or write current detected or generated in a second segment of the operation is adjusted to compensate for the detected leakage current. The first segment can be omitted in subsequent read or write operations if the target cell word line address has not changed and the leakage-tracked reference value has not become invalid for other reasons.
Abstract:
A memory device and an operation method thereof are provided, and the operation method of the memory device includes following steps. A programming operation is performed to write an original data into a first memory array in the memory device. The original data in the first memory array is verified, and whether to generate a write signal is determined according to a verification result. An error correction code is generated according to the original data, and the error correction code and a write address are stored temporarily in a buffer circuit of the memory device. When the write signal is generated, the error correction code and the write address in the buffer circuit are written into a second memory array in the memory device.
Abstract:
A memory array and structure are provided The array includes driving elements arranged in array; memory cells arranged in array and respectively corresponding to the driving elements, where one end of each memory cell is coupled to a first end of the corresponding driving element; word lines and bit lines arranged to intersect with each other, where each word lines is coupled to control ends of the driving elements in the same word line, and each bit line is respectively coupled to the other ends of the memory cells. For each word line, the first end of one driving element is connected to the first end of at least one other driving element in the same word line by a metal line, so as to form share driving elements.
Abstract:
A memory apparatus and a data access method for a memory are provided. The data access method includes: receiving a data erase command for performing a data erase operation; and, during the data erase operation: configuring a selected memory cell block in the memory according to the data erase command; providing a flag memory cell corresponding to the selected memory cell block, erasing a data in the flag memory cell according to the data erase command, and keeping a data in a plurality of selected memory cells in the selected memory cell block unchanged.
Abstract:
A memory configured to have data read therefrom is provided. The memory includes a data port including B transmitters disposed in parallel and for transferring data on both rising and falling edges of a clock, a first memory including a first data bus including N lines on which N bits can be transferred, and a second memory including a second data bus including N lines on which N bits can be transferred. The memory includes a data path controller including a data distributor disposed between the first and second memories and being connected to the data port, wherein, on the rising edge, the data distributor distributes a first data segment comprised of B bits from the first data bus to the data port and, on the falling edge, the data distributor distributes a second data segment comprised of B bits from the second data bus to the data port.
Abstract:
A memory device and an operation method thereof are provided, and the operation method of the memory device includes following steps. A programming operation is performed to write an original data into a first memory array in the memory device. The original data in the first memory array is verified, and whether to generate a write signal is determined according to a verification result. An error correction code is generated according to the original data, and the error correction code and a write address are stored temporarily in a buffer circuit of the memory device. When the write signal is generated, the error correction code and the write address in the buffer circuit are written into a second memory array in the memory device.
Abstract:
A program method for a multi-level cell (MLC) flash memory is provided. The memory array includes a plurality of pages and a plurality of paired pages, which correspond to the respective pages. The program method includes the following steps. Firstly, a program address command is obtained. Next, whether the program address command corresponding to any one of the paired pages is determined. When the program address command corresponds to a first paired page, which corresponds to a first page among the pages, among the paired pages, data stored in the first page to a non-volatile memory are copied. After that, the first paired page is programmed.