Abstract:
A semiconductor apparatus including a first stacked structure and a second stacked structure is provided. The first stacked structure and the second stacked structure are arranged along a first direction, and extended along a second direction perpendicular to the first direction. The first stacked structure includes a first operating portion and a first supporting portion. The first operating portion and the first supporting portion are alternately arranged along the second direction. A width of the first operating portion along the first direction is smaller than a width of the first supporting portion along the first direction.
Abstract:
A structure of a multichip package and a method for fabricating the multichip package are described. The multichip package includes multiple chip stacks including chips in multiple chip layers. Each of the chip stacks includes two or more chips, each chip being inside vertical projection of at least another chip in the chip stack and disposed in a respective chip layer. Each of the chip stacks also includes horizontal conductive lines extending to perimeter regions around the chip stacks, the chips in a particular chip layer being electrically connected to horizontal conductive lines disposed in the particular chip layer. Each of the chip stacks also includes vertical conductive lines in the perimeter regions electrically connected to one or more of the horizontal conductive lines in at least two chip layers. The multichip package also includes a controller chip electrically connected to at least one chip in the chip stacks.
Abstract:
A semiconductor device comprises a plurality of stacking blocks and a plurality of conductive lines. Each stacking blocks comprises two opposite finger VG structures. Each finger VG structure includes a staircase structure and a plurality of bit line stacks. The staircase structure is perpendicular to the bit line stacks, and the bit line stacks of the two opposite finger VG structures are arranged alternately. The conductive lines is disposed over the stacking blocks at interval The direction of the conductive lines is parallel to a direction of the bit line stacks. The conductive lines include a plurality of bit lines and a plurality of ground lines, and each stacking block includes at least one ground line.
Abstract:
A structure of a memory device and a method for making the memory device structure are described. The memory device includes an array of memory cells in an array level die. The array comprises a plurality of sub-arrays. Each of the sub-arrays comprises respective data lines. The memory device also includes page buffers for corresponding sub-arrays in a page-buffer level die. The memory device also includes inter-die connections that are configured to electrically couple the page buffers in the page-buffer level die to data lines of corresponding sub-arrays in the array level die.
Abstract:
A semiconductor structure is provided. The semiconductor structure includes a first stacked structure. The first stacked structure includes a first stacked portion disposed along a first direction, at least one second stacked portion connected with the first stacked portion and disposed along a second direction perpendicular to the first direction, and at least one third stacked portion connected with the first direction and arranged alternately with the second stacked portion along the first direction. The width of the third stacked portion is smaller than the width of the second stacked portion along the second direction.
Abstract:
A 3D stacked multichip module comprises a stack of W IC die. Each die has a patterned conductor layer, including an electrical contact region with electrical conductors and, in some examples, device circuitry over a substrate. The electrical conductors of the stacked die are aligned. Electrical connectors extend into the stack to contact landing pads on the electrical conductors to create a 3D stacked multichip module. The electrical connectors may pass through vertical vias in the electrical contact regions. The landing pads may be arranged in a stair stepped arrangement. The stacked multichip module may be made using a set of N etch masks with 2N-1 being less than W and 2N being greater than or equal to W, with the etch masks alternatingly covering and exposing 2n-1 landing pads for each mask n=1, 2 . . . N.
Abstract:
A three-dimensional memory structure is provided, comprising plural stacked structures vertically formed on a substrate, each stacked structure comprising a bottom gate, wherein the bottom gates of the stacked structures are electrically connected; plural gates and gate insulators alternately stacked on the bottom gate; and two selection lines formed above the gates and spaced apart form each other and the selection lines being independently controlled, wherein the gate insulator fills between the selection lines, between the gate and the selection lines and forms on top of the selection lines for insulation. The 3D memory structure further comprises plural charge trapping multilayers formed outsides of the stacked structures and extending to the bottom gates; plural ultra-thin channels formed outsides of the charge trapping multilayers and lined between the adjacent stacked structures; and a dielectric layer formed between the ultra-thin channels and between the stacked structures.
Abstract:
A memory device comprises a stack of linking elements including a first group of linking elements and a second group of linking elements different than the first group of linking elements. Interlayer connectors in a first plurality of interlayer connectors are connected to respective linking elements in the first group of linking elements. Interlayer connectors in a second plurality of interlayer connectors are connected to linking elements in the second group of linking elements. Patterned conductor lines in a first layer of patterned conductor lines are coupled to respective interlayer connectors in the first plurality of interlayer connectors. Patterned conductor lines in a second layer of patterned conductor lines disposed higher than the first layer of patterned conductor lines are coupled to respective interlayer connectors in the second plurality of interlayer connectors.
Abstract:
A memory device comprises a stack of linking elements including a first group of linking elements and a second group of linking elements different than the first group of linking elements. Interlayer connectors in a first plurality of interlayer connectors are connected to respective linking elements in the first group of linking elements. Interlayer connectors in a second plurality of interlayer connectors are connected to linking elements in the second group of linking elements. Patterned conductor lines in a first layer of patterned conductor lines are coupled to respective interlayer connectors in the first plurality of interlayer connectors. Patterned conductor lines in a second layer of patterned conductor lines disposed higher than the first layer of patterned conductor lines are coupled to respective interlayer connectors in the second plurality of interlayer connectors.
Abstract:
A memory device comprises a stack of linking elements including a first group of linking elements and a second group of linking elements different than the first group of linking elements. Interlayer connectors in a first plurality of interlayer connectors are connected to respective linking elements in the first group of linking elements. Interlayer connectors in a second plurality of interlayer connectors are connected to linking elements in the second group of linking elements. Patterned conductor lines in a first layer of patterned conductor lines are coupled to respective interlayer connectors in the first plurality of interlayer connectors. Patterned conductor lines in a second layer of patterned conductor lines disposed higher than the first layer of patterned conductor lines are coupled to respective interlayer connectors in the second plurality of interlayer connectors.