Abstract:
A memory device comprises a first conductive stripe, a first memory layer, a first conductive pillar, a first dielectric layer and a first conductive plug. The first conductive strip extends along a first direction. The first memory layer extends along a second direction adjacent to and overlapping with the first conductive stripe to define a first memory area thereon. The first conductive pillar extends along the second direction and overlapping with the first memory area. The first dielectric layer extends along the second direction adjacent to the first conductive stripe, the first memory layer and the first conductive pillar. The first conductive plus extends along the second direction and at least overlaps with a portion of the first conductive stripe, wherein the first conductive plus is electrically insulated from the first conductive stripe, the first memory layer and the first conductive pillar by the first dielectric layer.
Abstract:
A semiconductor structure and a method for manufacturing the same are disclosed. The semiconductor structure includes a first electrode layer, a second electrode layer and a dielectric layer between the first electrode layer and the second electrode layer. A width of the second electrode layer becomes larger in a direction away from the dielectric layer.
Abstract:
Methods, devices, systems, and apparatus for three-dimensional semiconductor structures are provided. In one aspect, a semiconductor device includes: a semiconductor substrate, multiple conductive layers vertically stacked on the semiconductor substrate, and multiple transistors. The multiple conductive layers include a first conductive layer, a second conductive layer, and a third conductive layer that are sequentially stacked together. The multiple transistors include a first transistor and a second transistor in the first conductive layer and a third transistor in the third conductive layer. Each transistor includes a first terminal, a second terminal, and a gate terminal. First terminals of the first, second, and third transistors are conductively coupled to a first conductive node in the second conductive layer.
Abstract:
A memory cell circuit, a memory cell array structure and a manufacturing method thereof are provided. The memory cell circuit includes a first transistor, a second transistor and a capacitor. The first transistor has a first end electrically coupled to a bit line, and a gate of the first transistor is electrically coupled to a primary word line. The second transistor has a first end electrically coupled to a second end of the first transistor, and a gate of the second transistor is electrically coupled to an auxiliary word line. A first end of the capacitor is electrically coupled to a second end of the second transistor and a second end of the capacitor receives a reference voltage.
Abstract:
A semiconductor device includes a stack formed on a substrate and memory strings penetrating the stack along a first direction. The stack includes conductive layers and insulating layers that alternately stacked. Each of the memory strings includes a channel layer, a memory structure, a first conductive pillar and a second conductive pillar. The channel layer, the first conductive pillar and the second conductive pillar extend along a first direction. The memory structure is disposed between the stack and the channel layer. The first conductive pillar and the second conductive pillar are electrically isolated from each other, and are respectively coupled to a first portion and a second portion of the channel layer. The first portion is opposite to the second portion. The first portion is surrounded by the memory structure, and the second portion is exposed from the memory structure.
Abstract:
A memory structure is provided. The memory structure includes a first channel body, a first source region, a first drain region, a first gate structure and a second gate structure. The first source region has a first conductivity and connects to a first end of the first channel body. The first drain region has a second conductivity and connects to a second end of the first channel body separated from the first end. The first gate structure is disposed adjacent to the first channel body and between the first end and the second end. The second gate structure disposed adjacent to the first channel body and between the first end and the second end.
Abstract:
Provided are a 3D flash memory and an array layout thereof. The 3D flash memory includes a gate stack structure, a annular channel pillar, a first source/drain pillar, a second source/drain pillar and a charge storage structure. The gate stack structure is disposed on a dielectric base and includes a plurality of gate layers electrically insulated from each other. The annular channel pillar is disposed on the dielectric base and penetrates through the gate stack structure. The first source/drain pillar and the second source/drain pillar are disposed on the dielectric base, are located within the channel pillar and penetrate through the gate stack structure. The first source/drain pillar and the second source/drain pillar are separated from each other and are each connected to the channel pillar. The charge storage structure is disposed between each of the plurality of gate layers and the channel pillar.
Abstract:
A memory device includes a plurality of memory cells arranged in series in a semiconductor body. First and second dummy memory cells arranged in series between a first string select switch and a first edge memory cell at a first end of the plurality of memory cells. The first dummy memory cell is adjacent the first edge memory cell, and the second dummy memory cell is adjacent the first string select switch. A channel line includes channels for the plurality of memory cells and the first and second dummy memory cells. Control circuitry is adapted for programming a selected memory cell in the plurality of memory cells corresponding to a selected word line by applying a switching voltage to the first dummy memory cell, the switching voltage having a first voltage level during a first time interval, and thereafter changing to a second voltage level higher than the first voltage level.
Abstract:
A 3D array of memory cells with one or more blocks is described. The blocks include a plurality of layers. The layers in the plurality include semiconductor strips which extend from a semiconductor pad. The layers are disposed so that the semiconductor strips in the plurality of layers form a plurality of stacks of semiconductor strips and a stack of semiconductor pads. Also, a plurality of select gate structures are disposed over stacks of semiconductor strips in the plurality of stacks between the semiconductor pad and memory cells on the semiconductor strips. In addition, different ones of the plurality of select gate structures couple the semiconductor strips in different ones of the stacks of semiconductor strips to the semiconductor pads in the plurality of layers. Further, an assist gate structure is disposed over the plurality of stacks between the select gate structures and the stack of semiconductor pads.
Abstract:
A three-dimensional (3D) memory and a method for manufacturing the same are disclosed. According to one embodiment, the 3D memory comprises a thin-film transistor. The thin-film transistor has a source region and a drain region disposed separately. The source region comprises a first source region and a second source region disposed between the first source region and the drain region. The first source region is p-type of doping, the second source region is n-type of doping, and the drain region is n-type of doping.