摘要:
An atomic force microscope is provided for sensing displacement of a cantilever based on scanning tunneling microscopy. The atomic force microscope includes a cantilever moving system which allows the cantilever to be moved or slipped between an STM tip and a sample. This results in the microscope being able to carry out atomic force microscopy and tunneling microscopy without changing a single STM tip and to control the very small force between the sample and the tip to be constant.
摘要:
A first voltage detector detects whether the voltage of a secondary cell has reached to 1.2V and a first timer counts a time duration for which the voltage is equal to or above 1.2V. If the time counted by the first timer reaches one hour, a second timer starts counting time for one hour. An amount of charge accumulated in the secondary cell is displays after counting of the one hour by the second timer is over. As a result, an accurate display of the amount of charge accumulated in the secondary cell can be achieved.
摘要:
An electronic timepiece in accordance with the present invention includes a time clocking circuit for counting reference signals from a reference signal generating circuit to provide time information as its output; a warning device for warning the user of a specific time, by use of vibrations or a buzzer, on the basis of time information derived from the time clocking circuit; and a timepiece state detection device for detecting the states of the temperature and the power source voltage of the timepiece and, if the detection values deviate from predetermined values, the detection device operates to stop the warning action of the warning means. The timings of time information derived from the time clocking circuit differ from each other between when the timepiece state detection device has detected a low temperature of the timepiece and when it has detected a low voltage at the power source, and differ from the time information timing at the normal state. This prevents any batteries' consumption which may otherwise be caused by the meaningless warning, and makes it possible to inform the user of the states of the timepiece through the movement of the hands.
摘要:
Utilizing rugged pattern of atomic size present on a crystalline substrate of a semiconductor such as silicon or selenium or the like, a microstructure body is produced on the substrate by forming a layer of a first element of one monolayer or less by arranging at the position of the substrate most stable in energy formed by ruggedness the atoms of the first element such as gold, silver, copper, nickel, palladium, platinum or an element of group IV and then depositing successively atoms of at least one second element of group III, group IV and group V on only at a part of the surface of the substrate on which said layer of one monolayer or less by vapor deposition, sputtering or the like.
摘要:
A fine-fabrication method of solid surfaces relates to a new surface fabrication method allows a solid-device surface to be fabricated at an atomic scale so as to produce an ultra-fine device or a device for recording information at an ultra-high density. A probe is installed with a tip thereof facing to the surface of a specimen to undergo fabrication. A voltage for forming an electric field is applied between the probe and the specimen. The electric field is large enough to field-evaporate atoms constituting the specimen or the probe; the electric field field-evaporates atoms constituting the specimen, removing them from the surface of the specimen; and as another alternative, the electric field field-evaporates atoms constituting the probe, depositing them on the surface of the specimen. Further, in another surface atom fabrication method, while the surface of a specimen is observed at an atomic scale using a surface observation technique by means of a scanning tunnelling microscope, a pulsative voltage large enough for the field evaporation of atoms described above is applied between the probe and the specimen at any arbitrary desired positions on the surface of the specimen; and the pulsative voltage field-evaporates and, hence, eliminates atoms one by one from the surface of the specimen.
摘要:
A fine-fabrication method of solid surfaces relates to a new surface fabrication method allows a solid-device surface to be fabricated at an atomic scale so as to produce an ultra-fine device or a device for recording information at an ultra-high density. A probe is installed with a tip thereof facing to the surface of a specimen to undergo fabrication. A voltage for forming an electric field is applied between the probe and the specimen. The electric field is large enough to field-evaporate atoms constituting the specimen or the probe; the electric field field-evaporates atoms constituting the specimen, removing them from the surface of the specimen; and as another alternative, the electric field field-evaporates atoms constituting the probe, depositing them on the surface of the specimen. Further, in another surface atom fabrication method, while the surface of a specimen is observed at an atomic scale using a surface observation technique by means of a scanning tunnelling microscope, a pulsative voltage large enough for the field evaporation of atoms described above is applied between the probe and the specimen at any arbitrary desired positions on the surface of the specimen; and the pulsative voltage field-evaporates and, hence, eliminates atoms one by one from the surface of the specimen.