摘要:
Methods of planarizing one or more layers having an irregular top surface topology in a semiconductor device based on an underlying MOS structure are disclosed. Methods of creating doped wells or regions for the underlying MOS structure are also disclosed, using thick oxide growths on the surface of the substrate to mask implantation of ions into, the wells. A technique for creating a pair of adjacent complementary oppositely-doped wells, such as for a CMOS structure, using a thick oxide growths as a mask is also disclosed. One of the methods of planarizing the one or more layers involves depositing, densifying and re-flowing a layer of glass on top of the topological layer. Another method of planarizing the one or more layers involves depositing, densifying and chemical-mechanically polishing the deposited and densified glass, thereby avoiding an additional temperature cycle (i.e., for re-flowing the glass) which would adversely affect underlying diffusions.
摘要:
A laser is used to cut or "zap" unwanted sections of an aluminum interconnect metallization pattern on a microelectronic circuit substrate. Vaporized aluminum forms a cloud above the substrate that is reacted with a gas to form a substance which can be prevented from solidifying and forming a conductive residue on the substrate that could create a short circuit in the metallization pattern. The gas can be pressurized oxygen, in which case the reactant substance is electrically insulative aluminum oxide that forms a desirable sealing coating over the cut area. The aluminum oxide has a lower density than aluminum, and expands in the cut area to form a hermetic seal with the facing edges of the metallization pattern. Alternatively, the gas can be chlorine or other material which forms a residue that can be easily removed using a solvent such as water.
摘要:
A process of interconnecting a semiconductor device to a substrate wherein solder balls on the semiconductor device are fused with one side of an embedded noble metal foil within a through hole in an interposer structure. Solder balls on the substrate are fused with the metal foil within the structure window on the other side of the metal foil.
摘要:
Fine, sub-micron line features and patterns are created in a sensitized layer on a semiconductor wafer by a beam of low wavelength radiation, such as X-rays or Gamma-rays. A continuous stream of such radiation is gated on and off by a shutter mechanism comprising a distortable-surface device and a beam-blocking device. The distortable-surface device is a surface acoustic wave device, a magnetostrictive device, or the like. The beam-blocking device is a beam stop, such as a knife edge, an aperture, or the like. The distortable-surface device can be selectively caused to reflect an incident beam of radiation past or into the beam-blocking device. In this manner, a continuous stream of radiation, such as from a pellet of Cobalt-60, can be quickly and precisely gated on and off to impact and to not-impact the semiconductor wafer, respectively. By moving either of the reflected beam or the semiconductor wafer, line features can be created in the sensitized layer on the semiconductor wafer.
摘要:
Automated photolithography of integrated circuit wafers is enabled with a processor connected to a Rayleigh derator, a form factor generator, a logic synthesizer, a layout generator, a lithography module and a wafer process. The Rayleigh derator receives manufacturing information resulting from yield data in the wafer process, and this manufacturing data is then used to derate the theoretical minimum feature size available for etching wafer masks given a known light source and object lens numerical aperture. This minimum feature size is then used by a form factor generator in sizing transistors in a net list to their smallest manufacturable size. A logic synthesizer then converts the net list into a physical design using a layout generator combined with user defined constraints. This physical design is then used by the mask lithography module to generate wafer masks for use in the semiconductor manufacturing. Manufacturing data including process and. yield parameters is then transferred back to the Rayleigh processor for use in the designing of subsequent circuits. In this way, a direct coupling exists between the measurement of wafer process parameters and the automated sizing of semiconductor devices, enabling the production of circuits having the smallest manufacturable device sizes available for the given lithography and wafer process.
摘要:
Methods of planarizing one or more layers having an irregular top surface topology in a semiconductor device based on an underlying MOS structure are disclosed. Methods of creating doped wells or regions for the underlying MOS structure are also disclosed, using thick oxide growths on the surface of the substrate to mask implantation of ions into the wells. A technique for creating a pair of adjacent complementary oppositely-doped wells, such as for a CMOS structure, using a thick oxide growths as a mask is also disclosed. One of the methods of planarizing the one or more layers involves depositing, densifying and re-flowing a layer of glass on top of the topological layer. Another method of planarizing the one or more layers involves depositing, densifying and chemical-mechanically polishing the deposited and densified glass, thereby avoiding an additional temperature cycle (i.e., for re-flowing the glass) which would adversely affect underlying diffusions.
摘要:
A polysilicon interconnect is formed on a microelectronic circuit substrate for conducting signals from a driver to a non-polycrystalline silicon contact which has higher impedance than the interconnect. A plurality of electronic "speed bumps" are spaced along the interconnect for disturbing or disrupting signals propagating along the interconnect toward the contact and thereby reducing undesirable back reflection and ringing. The speed bumps can include capacitance altering elements in the form of dielectric strips, or resistance altering elements in the form of low resistance doped areas or high resistance amorphous areas. The speed bumps can include first and second elements having different values of capacitance or resistance which are spaced along the interconnect in alternating relation.
摘要:
Methods of planarizing one or more layers having an irregular top surface topology in a semiconductor device based on an underlying MOS structure are disclosed. Methods of creating doped wells or regions for the underlying MOS structure are also disclosed, using thick oxide growths on the surface of the substrate to mask implantation of ions into the wells. A technique for creating a pair of adjacent complementary oppositely-doped wells, such as for a CMOS structure, using a thick oxide growths as a mask is also disclosed. One of the methods of planarizing the one or more layers involves depositing, densifying and re-flowing a layer of glass on top of the topological layer. Another method of planarizing the one or more layers involves depositing, densifying and chemical-mechanically polishing the deposited and densified glass, thereby avoiding an additional temperature cycle (i.e., for re-flowing the glass) which would adversely affect underlying diffusions.
摘要:
Fine, sub-micron line features and patterns are created in a sensitized layer on a semiconductor wafer by a source of X-ray radiation. The X-ray source emits very low wavelength radiation along a path towards a sensitized surface of a semiconductor wafer. An image mask substrate is disposed in the path of the radiation, and is provided with a patterned opaque material on a surface of a substrate thereof. The substrate is formed of beryllium, which is robust and has a thermal coefficient of expansion closely conforming to that of common image mask carriers. Further, a wide variety of opaqueing materials adhere well to the beryllium substrate, and the substrate is relatively insensitive to moisture. The image mask is spaced sufficiently close to the wafer that radiation passing through the mask forms a corresponding pattern in the surface of the wafer. For X-ray radiation, the opaqueing material is gold, tungsten, platinum, barium, lead, iridium, rhodium, or the like.
摘要:
A semiconductor die having raised conductive bumps on its surface for connecting to other devices or systems is disposed on a face of a preformed planar structure (interposer) having through holes. Solder joints with conductive bumps on an underlying substrate are formed in the through holes. In one embodiment, the interposer is dissolvable. In another embodiment, the through holes are at least partially filled with a conductive material for electrically connecting to the die. In another embodiment, the through holes are angled so that the interposer acts as a pitch spreader or adapter. In another embodiment, ball bumps are disposed on a side of the interposer away from the die. Various other embodiments are directed to multi-tier flip-chip arrays employing preformed planar structures between tiers.