摘要:
A semiconductor die is disposed on a side of an optically-transmissive preformed planar structure (interposer), and an optical element is disposed on an opposite side of the interposer. The interposer may be provided with through holes extending at least partially into the die side, and electrical probes in the through holes, for making contact to raised conductive bumps on the die. The interposer may be provided with raised portions for locating the optical element at a predetermined distance away from the die. The interposer may be provided with darkened areas for preventing light from impacting selected areas of the die.
摘要:
Fine, sub-micron line features and patterns are created in a radiation sensitive resist layer on a semiconductor wafer by a beam of short wavelength gamma rays. The resist layer includes photoresist which is substantially chemically inactive in response to the gamma rays. The photoresist is either doped or covered with a material that absorbs gamma rays and in response emits secondary radiation of a different wavelength, preferably photons, that is actinic with respect to the photoresist. The resist layer enables using radiation sources having better resolving ability than conventional photolithographic sources to perform near-field and direct-write lithography.
摘要:
A technique is describe for effecting very-high resolution semiconductor lithography using direct-write afocal electron-beam exposure of a sensitized wafer. A positioning mechanism and needle-like probe similar to those used in scanning-tunneling microscopy are used in conjunction with a controllable electron field emission source to produce a near-field electron beam capable of exposing an electron-beam sensitive resist on a wafer surface. Conventional e-beam resists are used. The technique can be used in conjunction with scanning-tunneling-like operation of the apparatus to record the appearance and nature of the wafer surface, thereby providing information about the location of underlying features. This location information can be used to assist in aligning the exposure patterns to existing structures in the semiconductor wafer. A multi-probe embodiment with separately controllable field emission sources provides for improved productivity by permitting contemporaneous exposure of multiple sites on a single wafer.
摘要:
Positive mechanical alignment is provided between substrates using micro-bump contacts by forming "detented" conductive bump contacts on one substrate having a concave end which receive and align the generally convex contour of bump contacts on the other substrate. Various configurations of concavities and convexities are described. Flux may be disposed in the concave end of the detented bump contact to promote formation of joints between the concave and convex bump contacts. Both bump contacts may be formed of reflowable material, such as solder, or one or the other of the contacts may be formed of a non-reflowable material which may also function as a standoff between the two substrates. Each substrate is provided with a plurality of bump contacts, and one substrate may be provided with a combination of convex and concave bump contacts corresponding to concave and convex bump contacts on the other substrate. The inventive technique is useful for joining die-to-die, die-to-substrate, or package-to-substrate.
摘要:
A technique for reducing thermally-induced mechanical stresses on bond pads in semiconductor device assemblies is accomplished by grouping the bond pads into a relatively small (compared to the total area of the die) sub-area within an interior area (generally away from the periphery) of the die. By keeping the bond pad layout small (tightly grouped, or oriented along a single row, or axis), differential thermally induced displacements between the bond pads are minimized, or are controlled in one dimension. Further, the bond pads may be disposed in a small area near the center of thermal expansion (centroid) of the die or near a heat-producing circuit element to minimize absolute thermal displacements of individual bond pads from the centroid or the circuit element. Overlapping sub-area patterns may be used, and grouped bond pads may be used in conjunction with (including overlapping of) traditional die-periphery located bond pads. Other aspects involve disposing the bond pads into an elongated pattern to minimize thermal displacement primarily in one direction, and orienting a lead frame or the like to accommodate any thermal migration of the bond pads in a controlled direction.
摘要:
A process for lowering the dielectric constant of a layer on a semiconductor wafer is described. The presence of the fullerene in the composite layer changes its dielectric constant. The process forms, on the wafer, a composite layer comprising matrix-forming material and a fullerene. The fullerene may be removed from the composite layer to leave an open porous layer. Removing the fullerene may be accomplished, for example, by contacting the composite layer with a liquid which is a solvent for the fullerene but not for the insulation material or by oxidizing the fullerene. The processes and insulation layers described are particularly useful for integrated circuits.
摘要:
An electronic system utilizing at least one integrated circuit that has reduced drive requirements for the input and output pads of the integrated circuit die. The integrated circuit of the system has an intermediate structure added between the output connection pad and substrate to reduce the amount of electron charge required to charge the output pad capacitance of the integrated circuit to a substantially negligible amount. In addition, an intermediate structure may be added between an input connection pad and substrate of the integrated circuit to reduce the amount of electron charge required to charge the input pad capacitance to a substantially negligible amount. In the present invention, a transistor amplifier driver is connected to the intermediate structure between the output pad and substrate to charge the capacitance that exists between the intermediate structure and substrate so that the voltage potential of the intermediate structure is substantially the same value as the output pad voltage value. In similar fashion, a transistor amplifier driver is connected to the intermediate structure between the input pad and substrate to charge the capacitance that exists between the intermediate structure and substrate so that the voltage potential of the intermediate structure is substantially the same value as the input pad voltage value.
摘要:
Automated photolithography of integrated circuit wafers is enabled with a processor connected to a Rayleigh derator, a form factor generator, a logic synthesizer, a layout generator, a lithography module and a wafer process. The Rayleigh derator receives manufacturing information resulting from yield data in the wafer process, and this manufacturing data is then used to derate the theoretical minimum feature size available for etching wafer masks given a known light source and object lens numerical aperture. This minimum feature size is then used by a form factor generator in sizing transistors in a net list to their smallest manufacturable size. A logic synthesizer then converts the net list into a physical design using a layout generator combined with user defined constraints. This physical design is then used by the mask lithography module to generate wafer masks for use in the semiconductor manufacturing. Manufacturing data including process and yield parameters is then transferred back to the Rayleigh processor for use in the designing of subsequent circuits. In this way, a direct coupling exists between the measurement of wafer process parameters and the automated sizing of semiconductor devices, enabling the production of circuits having the smallest manufacturable device sizes available for the given lithography and wafer process.
摘要:
Various techniques for forming superconductive lines are described whereby superconductive lines can be formed by stamping, etching, polishing, or by rendering selected areas of a superconductive film (layer) non-superconductive. The superconductive material can be "perfected" (or optimized) after it is formed into lines (traces). In one embodiment, trenches are etched in a substrate, the trenches are filled with superconductive material, and any excess superconductive material overfilling the trenches is removed, such as by polishing. In another embodiment, superconductive lines are formed by rendering selected areas of a superconductive layer (i.e., areas other than the desired superconductive lines) non-superconductive by "damaging" the superconductive material by laser beam heating, or by ion implantation. Superconductive lines formed according to the invention can be used to protect semiconductor devices (e.g., transistor structures) from over-current or overheating conditions such as those caused by CMOS latch-up. Current density limits and/or thermal limits of superconductors are employed to cause a superconductive trace to become non-superconductive when these limits are exceeded.
摘要:
Fine, sub-micron line features and patterns are created in a sensitized layer on a semiconductor wafer by a beam of Gamma-radiation. A continuous stream of such radiation, such as provided by a pellet of Cobalt-60, is collimated into a fine beam by a tapered collimator, and is gated on and off by a shutter mechanism comprising a distortable-surface device and a beam-blocking device. The fine, collimated beam converts points in a gamma-radiation-sensitive layer on a semiconductor wafer. By moving the wafer relative to the beam (or vice-versa), patterns are created in the layer of radiation-sensitive layer for further processing a layer underlying the radiation-sensitive layer.