Abstract:
A cylindrical can body capable of housing a honeycomb structure therein, the cylindrical can body including: a coil for induction-heating the honeycomb structure; a cylindrical member made of an insulating material; and a cylindrical metal member capable of housing the coil and the cylindrical member therein, wherein, in a cross section parallel to an axial direction of the cylindrical member, (i) the coil is provided radially outward from an inner circumferential surface of the cylindrical member, and at least a part of the coil is embedded in the cross section of the cylindrical member; or (ii) the coil is provided on an outer circumferential portion of the cylindrical member.
Abstract:
A honeycomb structure includes honeycomb segments each having a porous partition wall defining a plurality of cells, and includes a porous bonding layer containing a crystalline anisotropic ceramic and disposed so as to bond side surfaces of the honeycomb segments to each other. A ratio of a pore volume (cc/g) of a fine pore defined as a pore in the bonding layer having a pore diameter of 10 μm or more and less than 50 μm with respect to a pore volume (cc/g) of a coarse pore defined as a pore in the bonding layer having a pore diameter of 50 μm or more and 300 μm or less is from 2.0 to 3.5, the pore volume of the fine pore is from 0.15 to 0.4 cc/g, and the pore volume of the coarse pore is from 0.05 to 0.25 cc/g.
Abstract:
A honeycomb structure includes a honeycomb structure body having a partition wall which is constituted of a porous body. The porous body includes a refractory aggregate and a bonding material. The porous body constituting includes the bonding material at a mass proportion of 20 to 35 mass %. In an observation of a cross section of the partition wall with an electron microscope, when observing any given ten visual fields meeting a following condition (1), the number of refractory aggregates meeting a following condition (2) is five pieces or more in all of the ten visual fields.Condition (1): a proportion of an area occupied by the bonding material is 30% or more.Condition (2): the refractory aggregate has a particle diameter of 5 μm or more, and 60% or more of an outer circumference of the refractory aggregate is surrounded by the bonding material.
Abstract:
A heater includes: a first ceramic substrate; a glass portion provided on the first ceramic substrate; and an electrically heating portion embedded in the glass portion. The glass portion has closed pores. The electrically heating portion includes a metal wherein a rate of change of a mass at 700° C. relative to a mass at 25° C. in the air atmosphere is 0.1% or lees.
Abstract:
A honeycomb structure according to the present invention includes: a honeycomb structure portion 10 including an outer peripheral wall 100 and partition walls 101 arranged on an inner side of the outer peripheral wall 100, the partition walls 101 defining a plurality of cells 101a each forming a flow path extending one end face to other end face; and a magnetic material powder 11 attached to or filled in at least one of the plurality of cells 101a, wherein a volume and/or weight of the magnetic material powder 11 per unit volume varies in an axial direction AD and/or an axis orthogonal direction OD of the honeycomb structure portion 10.
Abstract:
An induction heating device according to the present invention includes: an induction heating coil 10 with a conductor 100 wound around a predetermined axis line AL; a member 11 including at least one soft magnetic material 110, the at least one soft magnetic material 110 being disposed at or on an outer side of each of axial end portions 102 of the induction heating coil 10 in an extending direction of the axis line AL; and a heating object 2 disposed on an inner side of the induction heating coil 10 and the member 11, the heating object 2 being configured to be heatable by induction heating using a magnetic flux from the induction heating coil 10.
Abstract:
A catalyst support for induction heating includes: a honeycomb structure including a pillar shaped honeycomb structure portion having: an outer peripheral wall; and a partition wall disposed on an inner side of the outer peripheral wall, the partition wall defining a plurality of cells, each of the cells extending from an end face on an inlet side to an end face on an outlet side in a gas flow direction to form a flow path; a catalyst supported onto an interior of the partition wall; and at least one magnetic body provided within the honeycomb structure, wherein the catalyst support has a region A where the catalyst is not supported, at least on the end face side of the catalyst support on the inlet side in the gas flow direction, and wherein the magnetic body is arranged at least in the region A in the gas flow direction.
Abstract:
A pillar shaped honeycomb structure including pillar shaped honeycomb segments joined together via joining material layers, wherein each of the pillar shaped honeycomb segment includes: an outer peripheral wall; and a porous partition wall disposed on an inner side of the outer peripheral wall, the partition wall defining a plurality of cells, each of the plurality of cells extending from one end face to other end face to form a flow path, wherein a joining material forming the joining material layers includes magnetic particles, and wherein the joining material contains aggregates, and at least a part of the aggregates comprises the magnetic particles.
Abstract:
A honeycomb structure includes latticed partition walls defining a plurality of polygonal cells which extends from one end face to the other end face and forms through channels for fluid, the partition walls are porously formed by using aggregates and a bonding material different from a material of the aggregates, and the partition walls have a relation indicating that a surface porosity of a surface region from a partition wall surface of each of the partition walls to a depth of 15% of a partition wall thickness T and an inner porosity of an inner region from the partition wall surface to a depth of 15% to 50% of the partition wall thickness are different from each other, and a difference obtained by subtracting the surface porosity from the inner porosity is in excess of 1.5%.
Abstract:
In a honeycomb structure, a bonding material monolithically bonds a plurality of honeycomb segments. The bonding material contains crystalline anisotropic ceramic particle and a particulate pore former. The crystalline anisotropic ceramic particle is 20 mass % or less. An average particle diameter of the pore former in the bonding material is 80 to 200 μm. In the case where a compressive Young's modulus of the bonding material is assumed as E (unit: MPa) and a shear strength of the bonding material is assumed as σ (unit: kPa), σ/E is 5 to 50.