Abstract:
A wave-length conversion inorganic member can includes a base body and an inorganic particle layer on the base body. The inorganic particle layer can include particles of an inorganic wave-length conversion substance which is configured to absorb light of a first wave-length and to emit light of a second wave-length different from the first wave-length. The inorganic particle layer can include an agglomerate of a plurality of the particles. Each of the plurality of the particles are in contact with at least one of the other particles or the base body. A cover layer comprises an inorganic material, and the cover layer continuously covers a surface of the base body and surfaces of the particles. The inorganic particle layer has an interstice enclosed by the particles, or by the particles and one of the base body and the cover layer.
Abstract:
A method of manufacturing a fluorescent-material-containing member includes: providing a fluorescent member including a fluorescent material, the fluorescent member having a first main surface side including a plurality of projections; disposing a powder of a light-reflective member between the projections of the fluorescent member; obtaining a sintered body by sintering the powder of the light-reflective member, and removing part of the sintered body from at least one of a first main surface side and a second main surface side of the fluorescent member to obtain the fluorescent-material-containing member including a first surface arranged on the first main surface side has and defined by the fluorescent member and the light-reflective member, and a second surface arranged on the second main surface side has and defined by the fluorescent member and the light-reflective member or defined solely by the fluorescent member.
Abstract:
A light emitting device includes an electrically conductive member provided with a reflective film; a light emitting element mounted on the reflective film; and a protective film continuously covering a surface of the light emitting element and a surface of the reflective film. A thickness of the protective film on the reflective film in a vicinity of the light emitting element is substantially equal to a thickness of the protective film on the reflective film in the region except for the vicinity of the light emitting element.
Abstract:
A light emitting device includes an electrically conductive member provided with a reflective film; a light emitting element mounted on the reflective film; and a protective film continuously covering a surface of the light emitting element and a surface of the reflective film. A thickness of the protective film on the reflective film in a vicinity of the light emitting element is substantially equal to a thickness of the protective film on the reflective film in the region except for the vicinity of the light emitting element.
Abstract:
A package for a light emitting device includes: a resin portion having a sidewall thereof; a first lead having a reflective layer containing silver, the first lead being embedded in the resin portion such that the reflective layer is exposed inside the sidewall; and a second lead having at least a part of a surface thereof exposed inside the sidewall, the second lead being embedded in the resin portion while being isolated from the first lead, wherein in the first lead, the reflective layer is provided spaced inward apart from a boundary between the first lead and the resin portion, and wherein a separating surface exposed between the boundary and the reflective layer is formed of a surface of metal containing silver in a smaller amount than that of the reflective layer.