摘要:
Embodiments of the disclosure provide auto-detection in wireless telecommunications. Certain embodiments provide or otherwise implement a specific sequence of bits and/or symbols for auto-detection. The specific sequence of bits can be embodied in or can include output codebits from an encoder in a communication device that can send a wireless transmission including the specific sequence. In one embodiment, the encoder can compute or otherwise generate cyclic redundancy checks (CRCs) or other types of validation checks at the communication device. The specific sequence can be determined using the payload of a packet frame. Both the manner in which the specific sequence is generated and the temporal order in which the specific sequence is received relative to other payload in the packet frame can provide specificity to the sequence.
摘要:
Provided are systems and methods for polling, by a wireless network access point, a group of wireless network stations for an uplink transmission status, receiving (from one or more wireless network stations of the group of wireless network stations) an uplink transmission status report indicating that the wireless network station is ready for uplink data transmission, scheduling (in response to receiving the one or more uplink transmission status reports) one or more uplink data transmissions from the one or more wireless network stations, and receiving (from the one or more wireless network stations in accordance with the scheduling) one or more uplink data transmissions comprising uplink data.
摘要:
Apparatuses, methods, and computer readable media for signaling high efficiency short training field are disclosed. A high-efficiency wireless local-area network (HEW) station is disclosed. The HEW station may comprise circuitry configured to: receive a trigger frame comprising an allocation of a resource block for the HEW station, and transmit a high efficiency short training field (HE-STF) with a same bandwidth as a subsequent data portion, wherein the transmit is to be in accordance with orthogonal frequency division multiple access (OFDMA) and wherein the transmit is within the resource block. A subcarrier allocation for the HE-STF may matche a subcarrier allocation for the subsequent data portion. The HE-STF and the subsequent data portion may be transmitted with a same power. A total power of active subcarriers of the HE-STF may be equal to or proportional to a second total of data subcarriers and pilot subcarriers of the subsequent data portion.
摘要:
An apparatus and method that allow user equipment (UE) to transmit information directly with other user equipment, using a device-to-device (D2D) mode is disclosed herein. A first D2D UE (dUE1) that wishes so communicate to a second D2D UE (dUE2) in D2D mode makes various communications requests to an Evolved Node B (eNB), which can facilitate the connection between the dUE1 and the dUE2. Among these requests are to make the D2D connection via WiFi instead of via Long Term Evolution (LTE). The eNB determines the WiFi capabilities of dUE1 and dUE2, then assigns a subset of available channels to be scanned by dUE1 and a separate subset of available channels to be scanned by dUE2. Thereafter, the eNB can assign a WiFi channel based on the scans performed by dUE1 and dUE2.
摘要:
An apparatus may include a transceiver operable to receive a downlink message from a base station for a serving cell, the downlink message allocating a set of control parameters. The apparatus may also include a processor circuit communicatively coupled to the transceiver and an uplink power control module operable on the processor circuit to read the set of control parameters, and apply a signal-to-noise-and-interference (SINR) parameter based on the received set of control parameters to determine physical uplink shared channel (PUSCH) power to be applied for a PUSCH transmission. Other embodiments are disclosed and claimed.
摘要:
Methods, devices and systems for jointly encoding allocation information of one or more wireless communication stations in a common portion of a physical layer header are disclosed. In some examples, a wireless device may: generate allocation information associated with one or more wireless communication stations; encode the allocation information into the common portion of the physical layer header; and transmit the physical layer header to the one or more wireless communication stations.
摘要:
Apparatuses and methods for channel state information reference signal (CSI-RS) configuration in distributed remote radio head (RRH) systems are described. A transmission point selection module can receive a user equipment (UE) signal via a transmission point from a plurality of transmission points sharing a single cell identification. A downlink transmission point can be selected based on the UE signal. The UE can then be configured to report CSI-RS measurements for the selected downlink transmission point.
摘要:
Example systems, methods, and devices for efficient indication of bandwidth and stream allocation are discussed. In one embodiment, a method for indication of bandwidth allocation in a wireless network can include partitioning, by a network device, a bandwidth of a wireless signal into a plurality of subband units, assigning one or more switch bits between adjacent subband units, and allocating one or more modified subband units to one or more users of the network. In another embodiment, a method for stream allocation can include partitioning, by a network device, a spatial stream of a wireless signal into a plurality of spatial streams, assigning one or more switch bits between adjacent spatial streams, and allocating one or more modified spatial streams to one or more users of the network. Certain methods, apparatus, and systems described herein can be applied to 802.11ax or any other wireless standard.
摘要:
Embodiments described herein relate generally to a user equipment (“UE”) that is to transmit and receive signals associated with synchronization. The UE may be receive signals associated with synchronization from a plurality of synchronization sources, such as an evolved Node B (“eNB”), a global navigation satellite system (“GNSS”), or another UE. The UE may synchronize to a signal received from a synchronization source based on a priority associated with that synchronization source and/or signal. However, if the UE does not receive any signals associated with synchronization, the UE may generate and transmit a signal that indicates a request for synchronization.
摘要:
Embodiments of user equipment and methods for improved uplink transmission power management and scheduling, are generally described herein. For example, in an aspect, a method of uplink power management is presented, the method includes determining whether a total desired transmission power exceeds a total configured maximum output power for a subframe. When the total desired transmission power exceeds the total configured maximum output power, the method includes allocating a minimum proactive power limitation to each serving cell, assigning a remaining power to one or more channels based on priority, and computing a total power assignment based on the allocating and the assigning.