Abstract:
In a multi-wire channel that includes at least three wires, each unique wire pair of the multi-wire channel has approximately the same signal propagation time. In this way, jitter can be mitigated in the multi-wire channel for signaling where, for a given data transfer, a differential signal is transmitting on a particular pair of the wires and every other wire is floating. In some implementations, matching of the signal propagation times involves providing additional delay for at least one of the wires. The additional delay is provided using passive signal delay techniques and/or active signal delay techniques.
Abstract:
Aspects of a method of manufacturing a capacitor are provided. The method includes layering a plurality of dielectric plates. The plurality of dielectric plates includes a first dielectric plate having a first conductive region and a second conductive region on a surface of the first dielectric plate. The method further includes forming an inner electrode through an axis of the layered plurality of dielectric plates. The inner electrode electrically couples to the first conductive region on the surface of the first dielectric plate. The method further includes forming an outer electrode, where the outer electrode electrically couples to the second conductive region on the surface of the first dielectric plate.
Abstract:
Some features pertain to an integrated device that includes a substrate, several metal layers coupled to the substrate, several dielectric layers coupled to the substrate, and a redistribution portion coupled to one of the metal layers. The redistribution portion includes a first metal redistribution layer, an insulation layer coupled to the first metal redistribution layer, and a second metal redistribution layer coupled to the insulation layer. The first metal redistribution layer, the insulation layer, and the second metal redistribution layer are configured to operate as a capacitor in the integrated device. In some implementations, the capacitor is a metal-insulator-metal (MIM) capacitor.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. The apparatus generates a plurality of interconnect patterns for a set of longitudinal channels that are occupied by horizontal interconnects. Each interconnect pattern may be different from the other interconnect patterns. Each interconnect pattern may define relative locations for the set of horizontal interconnects and gap channels. Highest crosstalk is determined for each of the interconnect patterns and the interconnect pattern with the minimum highest crosstalk is selected as a preferred pattern. The highest crosstalk may comprise far-end crosstalk or near-end crosstalk and may be calculated for a range of frequencies or for a plurality of frequencies. The crosstalk may be calculated by modeling the interconnects as transmission lines.
Abstract:
Some features pertain to an integrated device that includes a die and a first redistribution portion coupled to the die. The first redistribution portion includes at least one dielectric layer and a capacitor. The capacitor includes a first plate, a second plate, and an insulation layer located between the first plate and the second plate. The first redistribution portion further includes several first pins coupled to the first plate of the capacitor. The first redistribution portion further includes several second pins coupled to the second plate of the capacitor. In some implementations, the capacitor includes the first pins and/or the second pins. In some implementations, at least one pin from the several first pins traverses through the second plate to couple to the first plate of the capacitor. In some implementations, the second plate comprises a fin design.
Abstract:
In a multi-wire channel that includes at least three wires, each unique wire pair of the multi-wire channel has approximately the same signal propagation time. In this way, jitter can be mitigated in the multi-wire channel for signaling where, for a given data transfer, a differential signal is transmitting on a particular pair of the wires and every other wire is floating. In some implementations, matching of the signal propagation times involves providing additional delay for at least one of the wires. The additional delay is provided using passive signal delay techniques and/or active signal delay techniques.
Abstract:
In a multi-wire channel that includes at least three wires, each unique wire pair of the multi-wire channel has approximately the same signal propagation time. In this way, jitter can be mitigated in the multi-wire channel for signaling where, for a given data transfer, a differential signal is transmitting on a particular pair of the wires and every other wire is floating. In some implementations, matching of the signal propagation times involves providing additional delay for at least one of the wires. The additional delay is provided using passive signal delay techniques and/or active signal delay techniques.
Abstract:
A memory interface includes circuitry configured for applying a variable delay to a portion of a data signal and applying a variable delay to a data strobe. The delayed data strobe samples the delayed portion of the data signal. Delayed portions of the data signal are spaced away from non-delayed portions of the data signal by alternating the routing of delayed bits and non-delayed bits of the data signal. A training block determines and sets a value of the variable delay corresponding to a largest value of a number of recorded eye aperture widths.
Abstract:
A memory interface includes circuitry configured for applying a variable delay to a portion of a data signal and applying a variable delay to a data strobe. The delayed data strobe samples the delayed portion of the data signal. Delayed portions of the data signal are spaced away from non-delayed portions of the data signal by alternating the routing of delayed bits and non-delayed bits of the data signal. A training block determines and sets a value of the variable delay corresponding to a largest value of a number of recorded eye aperture widths.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. The apparatus generate a plurality of interconnect patterns for a set of vertical interconnects. Each interconnect pattern may be different from the other interconnect patterns. Each interconnect pattern may define relative locations for the set of vertical interconnects within a predefined area of a substrate in the semiconductor device. Highest crosstalk is determined for each of the interconnect patterns and the interconnect pattern with the minimum highest crosstalk is selected as a preferred pattern. One or more sets of interconnects is formed on a substrate in accordance with the preferred pattern. At least one set of interconnects may be rotated with respect to another set of interconnects on the substrate to minimize crosstalk between the sets of interconnects.